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ABSTRACT

Third-order central moments have been shown to be well suited as
objective functions for blind deconvolution of impulsive signals. On-
line implementations of such algorithms may suffer from increas-
ing filter norm, forcing adaptation under constrained filter norm.
This paper extends a previously known efficient algorithm with self-
stabilizing properties to the case of using a third-order moment ob-
jective function. New results herein use averaging analysis to deter-
mine adaptation stepsize conditions for asymptotic stability of the
filter norm.

1. INTRODUCTION
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Fig. 1. Model of general adaptive blind deconvolution.

Blind deconvolution is used for identification or equalization of
unknown systems in situations where only the system output can
be observed. A general discrete-time model is shown in Figure 1,
where n denotes a time index, sn the unknown source, and c the
unknown system. The object is to find the deconvolution filter f that
approximately inverts the unknown system, so that yn becomes an
estimate of sn.

If the deconvolution filter f is iteratively adjusted according to
some error function, we get an adaptive blind deconvolution setting.
The error function (corresponding to the error signal of the standard
LMS algorithm) is related to the gradient of an objective function
of the filter output yn. Adaptation of f is aimed at maximizing the
objective function.

Minimum Entropy Deconvolution (MED) methods [1], [2] are
based on the idea that; given an uncorrelated sequence sn, the prob-
ability distribution of un is closer to a Gaussian distribution com-
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pared to that of sn. This consequence of the central limit theorem
allows for blind deconvolution based on discriminating the distri-
bution of yn from a Gaussian distribution. An objective function
for adaptive MED should therefore be a measure of ‘how Gaussian’
yn is. Higher-order moments (order greater than two) are popular
measures of Gaussianity, especially the kurtosis (normalized fourth-
order moment).

Apart from their ability to measure Gaussianity, higher-order
moments can also be used to describe how heavy-tailed the probabil-
ity density function (PDF) of a signal is. A signal with a heavy-tailed
PDF has a ‘spiky’ appearance. This type of distribution characteri-
zation allows for blind deconvolution without the assumption of the
source signal necessarily being a white sequence.

If sn is known to have a non-zero third-order moment, this asym-
metry allows for exploitation of skewness as an objective function, as
an alternative to kurtosis. The skewness of a stochastic variable x is
the normalized third-order moment

S(x) =
E{x3}

(E{x2})3/2
, (1)

where E{·} denotes expectation. Since all odd-order moments of a
signal with symmetric PDF are zero, the use of odd-order moments
such as (1) is restricted to asymmetric signals.

In previous work, skewness has been used for blind deconvo-
lution of impulsive signals (i.e. asymmetric signals dominated by
positive ‘spikes’). When compared to kurtosis, skewness generally
gives faster convergence of algorithms, and is less sensitive to addi-
tive white Gaussian noise [3], [4]. This motivates why exploitation
of signal asymmetry using skewness may be preferable to kurtosis-
based methods.

Due to the relative complexity of its gradient equation, (1) may
not be suitable as an objective function for real-time applications
requiring minimal computational cost. A more computationally effi-
cient function is

O(x) =
1

3
E

{
x3

}
, (2)

a scaled version of the third-order moment of the stochastic variable
x. While easier to estimate than skewness, (2) is not scale invariant
in x. That is, O(x) �= O(kx) for k �= 1. As a consequence, stan-
dard gradient-ascent algorithms based on (2) give a rapid increase
in filter norm over iterations. In fact, such problems arise for gen-
eral choices of objective functions when impulsive signals are de-
convolved [5]. Increasing filter norm causes numerical problems in
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implementations, especially on fixed-point architectures. Therefore,
a blind deconvolution algorithm maximizing the third-order moment
must work under constrained filter norm.

An overview of several norm-constrained gradient adaptation al-
gorithms can be found in [6] and [7], mainly considering objective
functions of the form

J = ±
1

p
E {|yn|

p} ,

where p is a positive integer. Since these functions are sign-invariant
in their argument, they are unable to exploit asymmetry.

In this paper, one of the algorithms from [6] and [7] is studied
when (2) is the specific function to be maximized. The work in [6]
and [7] is extended, using averaging analysis, to determine condi-
tions for asymptotic numerical stability. The computational cost of
this algorithm is compared to other commonly employed methods.

2. NOTATION

Referring to Figure 1, the deconvolution filter f is an adaptive, real
FIR filter of order N , represented at time n by its coefficient vec-
tor fn � [f0n f1n · · · fNn]T. The norm ‖fn‖ of fn is defined as
the Euclidean, or �2-norm. Denoting the filter regressor by the vec-
tor of real samples un � [un un−1 · · · un−N ]T, the filter output
becomes the vector inner product yn = f

T
n un.

The objective function to be maximized is the third-order mo-
ment of the filter output yn,

O(yn) �
1

3
E

{
y 3

n

}
=

1

3
E

{(
f

T
n un

)3
}

. (3)

Throughout the remainder of this paper, the operation count as-
sociated with implementations of each of the presented algorithms
are taken under the assumption that all expectations of the form
E{xn} are estimated by instantaneous values xn, as is customary
for on-line applications.

3. ADAPTATION UNDER CONSTRAINED FILTER NORM

3.1. Adaptation Using Steepest Ascent

Adaptation by steepest ascent is used to adjust the filter to maximize
the objective (3),

fn+1 = fn + µ∇∇∇n, (4)

where µ is a small positive stepsize and∇∇∇n is the gradient of O with
respect to fn,

∇∇∇n �
∂ O

∂ fn
=

∂ O

∂ yn

∂ yn

∂ fn
= E

{
y2

n un

}
. (5)

Using (4), fn is iteratively adjusted until O attains a maximum. Note
that for any number α and any vector f ,

O(αf) = α3O(f).

Hence, for any filter vector f , we can improve O with the vector
αf , α > 1. Therefore (4) will never converge since ∇∇∇n will never
approach zero. Instead, the norm of fn will rapidly increase over

iterations. A simple way to deal with this is to combine (4) with a
frequent normalization procedure,

fn+1 ←
fn+1

‖fn+1‖
. (6)

While this would keep ‖fn‖ = 1 over iterations, the computational
cost associated with combining (4) and (6) is relatively large; on the
order of 4N operations per iteration for an N th-order filter. There-
fore, alternative ways to do steepest ascent under constrained filter
norm are desired.

3.2. Orthogonal Gradient Decomposition

Recognize that a scaling αfn only results in a scaling αyn of the
filter output signal; the ‘quality’ of deconvolution is not affected. A
reasonable approach would therefore be to avoid updating fn in the
radial direction.

Consider a decomposition of ∇∇∇n into ∇∇∇n = Rn + Pn, where
Rn is the orthogonal projection of∇∇∇n onto fn,

Rn �
∇∇∇T

n fn

‖fn‖2
fn. (7)

Then modify the steepest-ascent algorithm to only update fn in non-
radial directions,

fn+1 = fn + µPn = fn + µ [∇∇∇n − Rn] . (8)

This algorithm can be viewed as a search for local maximum points
of the objective function in the tangent space of the hypersphere
‖f‖ = ‖fn‖ at f = fn. Unlike the standard algorithm (4), the
modified version is expected to converge to points at which Pn ap-
proaches zero.

Ideally, the search for local maximum points should be restricted
to some hypersphere, ‖fn‖ = C, to ensure that the filter norm stays
fixed. For (8), it is straightforward to show that ‖fn+1‖ ≥ ‖fn‖.
Hence, although the growth in ‖fn‖ will not be as rapid as for the
standard algorithm, this modified gradient ascent must be combined
with an infrequent normalization of fn. Even without normalization,
the operation count per iteration for an implementation of (8) is on
the order of 4N for an N th-order filter. Hence, this algorithm offers
no computational savings.

3.3. Pseudo-Orthogonal Gradient Decomposition

A slight modification of (8) is achieved if the factor 1/‖fn‖
2 is ne-

glected in (7). Define

R̃n �

(
∇∇∇T

n fn

)
fn and P̃n � ∇∇∇n − R̃n,

and do the filter adaptation as

fn+1 = fn + µ P̃n

=
(
1 − µ∇∇∇T

n fn

)
fn + µ∇∇∇n. (9)

As noted in [6] and [7], if ∇∇∇T
n fn > 0, this algorithm operates in a

stable manner, maintaining approximately unit filter norm. Absolute
convergence of the algorithm will, however, ultimately depend on µ.
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From the definitions of the gradient (5) and the objective function
(3), we find that

∇∇∇T
n fn = E

{
y3

n

}
= 3O(yn), (10)

i.e. the quantity ∇∇∇T
n fn is proportional to the objective function to

be maximized by the algorithm. Although O(yn) > 0 cannot be
guaranteed for all n, the algorithm will most likely tend towards a
positive objective over iterations for a well-conditioned problem.

Using (10), (9) can be rewritten as

fn+1 =
(
1 − µ E

{
y3

n

})
fn + µ∇∇∇n, (11)

which exposes the algorithms simplicity. The computational cost of
implementing this algorithm with an N th-order filter is on the or-
der of 3N operations per iteration. Furthermore, (11) contains only
multiplications and additions (i.e. no divisions), making it highly
suitable for implementation on fixed-point digital signal processors,
which are specialized at performing such arithmetic operations.

The next section considers the asymptotical behavior of this al-
gorithm and derives a sufficient condition on µ for numerical stabil-
ity.

4. ASYMPTOTIC STABILITY OF THE
PSEUDO-ORTHOGONAL GRADIENT DECOMPOSITION

ALGORITHM

To analyze the behavior of ‖fn‖ over iterations in the algorithm (11),
define

εn � ‖fn‖
2 − 1 (12)

as the deviation of ‖fn‖2 from unity at time n. Multiplying both
sides of (11) with their transposes and subtracting off one, gives after
rearranging terms

εn+1 =
(
1 − µ 2E

{
y3

n

})
εn + µ2‖P̃n‖

2. (13)

This expression describes how the norm of fn deviates from unity
over iterations. The goal is to derive sufficient conditions on µ such
that εn → 0 as n → ∞.

Note that (13) is a difference equation of the form

εn+1 = εn + µ g(n, εn, µ), (14)

where g is a nonlinear, stochastic and time-varying function. As-
suming that the stepsize µ is small, (14) may be approximated by
the averaged system

εn+1 = εn + µ gav(εn), (15)

where
gav(ε) = E {g(n, ε, 0)} | ε = constant

. (16)

The necessary conditions for the approximation of (14) with the av-
eraged system (15) to be valid are essentially that, over a fixed time
interval; gav is time invariant, |ε|, |gav| are bounded, and g and the
difference g − gav fulfill global Lipschitz conditions in ε and µ. Re-
fer to [8, Ch. 9] for details.

Although the expectation in (16) is taken with µ = 0, we choose
to regard gav as a function of both ε and µ to investigate how the

stepsize affects the asymptotical behavior of the algorithm. Compar-
ing (13) with (14) gives

g(n, εn, µ) = −2E
{
y3

n

}
εn + µ ‖P̃n‖

2,

and the averaged system from (16) as

gav(ε, µ) = −2 Sy ε + µ P̃ 2,

where

Sy � E
{
y3

n

}
, (17)

P̃ 2
� E

{
‖P̃n‖

2
}

(18)

are assumed to be time invariant.
While the assumptions of time-invariance in (17) and (18) are

not realistic over a larger span of iterations (in fact, note that Sy is
proportional to the objective function to be maximized), (17) and
(18) are approximately time invariant over limited number of itera-
tions if µ is small.

For small values of µ, (13) may thus be approximated by

εn+1 = (1 − µ2Sy) εn + µ2P̃ 2. (19)

If 1 − µ2Sy �= 1, (19) can be rewritten as

εn = (1 − µ2Sy)n ε0 +
µP̃ 2

2Sy
[1 − (1 − µ2Sy)n] . (20)

Under the condition

|1 − 2µSy| < 1, (21)

the sequence (20) converges, and we get

lim
n→∞

εn =
µP̃ 2

2Sy
. (22)

Thus, the asymptotic deviation of ‖fn‖2 from unity is proportional
to the stepsize µ. In general, µ � 1, and so the algorithm (11), if
stable, operates very close to unit filter norm.

Although the limit (22) is taken under the approximation of Sy

and P̃ 2 being time invariant, it is suggested that (21) gives a suffi-
cient condition for local convergence of εn over a limited span of
iterations, over which time-invariance assumptions hold.

Condition (21) can be rewritten as

0 < µ Sy < 1. (23)

Since µ is positive by definition, Sy = E
{
y3

n

}
is required to be pos-

itive, which is expected at convergence for a well-conditioned prob-
lem. Furthermore, Sy is expected to slowly increase over iterations
as the algorithm converges in fn. The quantity µ Sy could therefore
be monitored during adaptation, and the stepsize decreased if nec-
essary, in order to insure that (23) holds. This guidance on stepsize
requires only a simple scalar multiplication and check.

Note that (23) only concerns stability in ‖fn‖. A stepsize satis-
fying (23) is not guaranteed to give convergence to an fn maximizing
the objective.
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Fig. 2. Absolute deviation of ‖fn‖ from unity versus iteration num-
ber.
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Fig. 3. Estimated skewness of filter output versus iteration.

5. EXPERIMENTAL RESULTS

In a numerical experiment, the algorithm (11) was used to implement
an adaptive blind equalizer for a synthetic indoor Ultra-Wideband
(UWB) communication channel with Impulse Radio signaling [9].
Such signals consist of pulse-position modulated impulses of ex-
tremely short duration, typically on the order of a nanosecond. Be-
cause of the large multipath spread of typical indoor UWB channels,
intersymbol interference (ISI) is likely to occur at high data rates
[10], [11]. Due to the impulsive nature of these signals, an adap-
tive blind equalizer based on third-order moments might be used to
mitigate the effects of ISI.

The impulse response of an indoor UWB channel with a rich
multipath spread of approximately 200 nanoseconds was synthe-
sized with the aid of a recipe from [12], with additive white Gaus-
sian noise at a signal-to-noise ratio per bit of 15dB. The Impulse
Radio signals used binary orthogonal modulation at a bit rate of 10
Mbits/second and a sampling rate of 15 samples per nanosecond.
Equalizers of order N = 400 were generated using (11) for three
different stepsizes, each over 1000 adaptation iterations. All expec-
tation operations in (11) were estimated using instantaneous values.
Figures 2 and 3 show, respectively, the resulting absolute deviation
of ‖fn‖ from unity and skewness versus iteration number. The plots
show averaged results over 20 independent runs.

As seen in Figure 2, the deviation from unit norm at conver-
gence increases with the stepsize, confirming the result (22) from
Section 4. Figure 3 shows the convergence of the algorithm in terms
of skewness. Note that a larger stepsize leads to faster convergence,
but results in a smaller asymptotic skewness.

Experimental results also indicate that the stability condition
(23) indeed can be monitored to indicate instability in ‖fn‖. How-
ever, for stepsizes that give convergence in fn (as seen in Figure 3),
(23) is typically satisfied by a large margin. Thus, for reasonable
choices of µ, the algorithm should be stable in ‖fn‖.

6. CONCLUSION

A computationally efficient algorithm for norm-constrained gradi-
ent acsent has been studied for blind deconvolution of asymmetric
source signals using a third-order moment based objective function.
The results indicate that the algorithm maintains approximately unit
filter norm for reasonable choices of adaptation stepsize. The con-
dition on adaptation stepsize insuring a stable filter norm is trivial to
calculate and verify. The small computational cost, involving only
multiplications and additions, makes it well suited for on-line imple-
mentation on fixed-point digital signal processors.
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