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ABSTRACT

It is well known that the conventional adaptive algorithm for can-
cellation of the effect of the feedback path in hearing aids is biased.
In this paper the stationary point of a modified adaptive algorithm
by splitting the delay in the conventional one is derived by a di-
rect method considering the causality constraint and an explicit ex-
pression of the bias is obtained. Also, a stability condition is men-
tioned. Then, when the input signal to hearing aids is a moving
average (MA) process or an autoregressive (AR) process, unbiased
algorithms for identification of the feedback path are proposed. It
is shown by simulations that the new algorithm for an AR process
converges considerably faster than that of the previously proposed
two-channel adaptive algorithm.

1. INTRODUCTION

There have been several works concerning the analysis of some adap-
tive algorithms in hearing aids [1]–[3]. In hearing aids there is an
acoustic feedback path from the receiver to the microphone and this
causes annoying effects such as whistling and howling. An adaptive
filter is used to model this acoustic feedback path and cancel its ef-
fect. In [1], based on the time domain approach, an expression of
the bias in the weight vector of the conventional adaptive filter algo-
rithm has been derived by assuming that the incoming signal is an
AR process. But this expression is not a closed form one so that it
is not easy to interpret and utilize. In [2] via the frequency domain
technique a corresponding formula and the convergence condition
have been presented.

In [3] an unbiased algorithm using a two-channel identification
scheme has been proposed for the case where the incoming signal is
an AR process of order q − 1 with its identifiability condition that
the length of the delay is greater than or equal to q. In [4] the conver-
gence analysis of this algorithm using the ODE (ordinary differential
equation) method has been presented together with the expression of
the steady-state mean square parameter estimation errors.

In this paper, first by a method which is more direct than that
in [2] but is still considering the causality constraint, the explicit ex-
pression of this bias in [2] is rederived. Also, the stability condition
in [2] is mentioned. But it is not possible to separate the parameters
of the feedback path from the stationary point of the adaptive filter
based on this expression. In [5], a modified scheme by splitting the
delay in the forward path has been considered. Here, based on this
scheme unbiased identification algorithms are proposed for the case
where the incoming signal is an MA process or an AR process. Fi-
nally, the new algorithm and the algorithm in [3] are compared under
the condition that the steady-state relative mean square estimation

Fig. 1. Block diagram of the conventional hearing aids.

errors are same. It is seen by simulations that the new algorithm
converges considerably faster.

2. DERIVATION OF THE STATIONARY POINT

Fig.1 shows the block diagram of a hearing aid plant with the con-
ventional adaptive filter where d(n) is a zero-mean stationary in-
coming signal and the transfer functions of the forward path and the
feedback path are G(z) and H(z), respectively. The forward path
transfer function G(z) is the desired characteristic of the hearing
aids and is fixed and known but H(z) is the transfer function from
the receiver to the microphone which is unknown and may be slowly
time-varying. The conventional LMS algorithm for cancellation of
the effect of the feedback path is

w(n + 1) = w(n) + µx(n)e(n) (1)

with

x(n) = [x(n), x(n − 1), . . . , x(n − L + 1)]T (2)

w(n) = [w0(n), w1(n), . . . , wL−1(n)]T (3)

where x(n) and wi(n) are the input signal and the i-th weight of
the adaptive filter, respectively and µ is the positive step size. The
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signals x(n) and e(n) are expressed as

x(n) = G(z)e(n) (4)

e(n) = y(n) − W (z)x(n)

= d(n) + (H(z) − W (z))G(z)e(n) (5)

where y(n) is the output of the microphone and z−1 denotes the unit
time delay operator with

W (z) = w0 + w1z
−1 + · · · + wL−1z

−L+1 (6)

H(z) = h0 + h1z
−1 + · · · + hM−1z

−M+1. (7)

In (5) and (6) a fixed weight vector w is used. Then, from (4) and
(5) e(n) is expressed as

e(n) = Q(z)d(n) (8)

with

Q(z) =
1

1 + G(z)(W (z) − H(z))
. (9)

where we assume that this is stable. The stationary point satisfies

E[x(n − l)e(n)] = 0 (l = 0, . . . , L − 1). (10)

From (4) and (8) the left hand side of (10) can be expressed as

1

2π

Z 2π

0

e−jlwQ(ejω)G(ejω)Q(e−jω)S(ejω)dω

=
1

2π

Z 2π

0

zlQ(z−1)G(z−1)Q(z)S(z−1)dω (11)

where S(ejω) is the power spectrum of d(n) and we put z = e−jω .
Hence, (10) can be expressed asZ 2π

0

zlQ(z−1)G(z−1)Q(z)S(z−1)dω = 0 (12)

Although (12) holds for l = 0, . . . , L − 1, if L is large enough, it
is reasonable to find a solution that satisfies (12) for all l ≥ 0. For
this, the integrand must be a series of positive powers of z. Hence,
we have

[Q(z−1)G(z−1)Q(z)S(z−1)]+ = 0 (13)

where [·]+ denotes the extraction of the causality part, that is, the
constant term and negative powers of z. Let the spectral factorization
of S(z) be

S(z) = R(z)R(z−1)σ2 (14)

where R(z) is of minimum phase and its constant term is 1. Since
Q(z) is stable, R(z−1)Q(z−1) is purely non-causal and can be fac-
tored out from [·]+ in (13). So, we have»

G(z−1)R(z)

1 + G(z)(W (z) − H(z))

–
+

= 0. (15)

To obtain an explicit solution of (15) we assume that the transfer
function of the forward path is expressed as

G(z) = z−qGc(z) (16)

where Gc(z) is of minimum phase. Then, from (15) and (16) we
have »

zqR(z)

1 + z−qGc(z)B(z)

–
+

= 0 (17)

Fig. 2. Block diagram of a modified scheme by splitting the delay.

where we put the bias as

B(z) = W (z) − H(z). (18)

From (17) we have

[zqR(z)]+ =
R(z)Gc(z)B(z)

1 + z−qGc(z)B(z)
. (19)

Putting

A(z) =
[zqR(z)]+

R(z)
(20)

the bias is obtained as

B(z) =
A(z)

Gc(z)
`
1 − z−qA(z)

´ . (21)

But this expression is not useful for separating the impulse response
of the feedback path. In Fig.2 a modified scheme treated in [5] is
shown where the delay z−q is split into two parts, that is, z−1 is in
the forward path and z−q+1 is in the feedback path. So in this case
G(z) = z−1Gc(z), B(z) = W (z) − z−q+1H(z) and

A(z) =
[zR(z)]+

R(z)
(22)

B(z) =
A(z)

Gc(z)
`
1 − z−1A(z)

´ . (23)

Hence, the stationary point of the adaptive filter in Fig.1 is given by

Wopt(z) =
A(z)

Gc(z)
`
1 − z−1A(z)

´ + z−q+1H(z). (24)

3. THE STABILITY CONDITION

Here we use the ODE method to obtain a (local) stability condition
of the stationary point of (1). The linearized ODE near the stationary
point wopt is described as

˙̄w(t) = −Φ(w̄(t) − wopt) (25)
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with

Φ = − ∂

∂w
E[x(n)e(n)]

˛̨̨
w=wopt

where from (11) the (k, l)th elemet of Φ is given by

Φlk = − ∂

∂wk

1

2π

Z 2π

0

zlQ(z−1)G(z−1)Q(z)S(z−1)dω.

From (9)
∂

∂wk
Q(z) = −zkG(z)Q2(z)

hence,

Φlk = − 1

2π

Z 2π

0

˘
zl+kG2(z−1)S(z−1)Q2(z−1)Q(z)

+ zl−kG(z−1)S(z−1)Q2(z)G(z)Q(z−1)
¯
dω. (26)

At the stationary point from (13) Q(z−1)G(z−1)Q(z)S(z−1) is a
series of positive powers of z and so is the first term of the integrand
of (26). Hence the first term of (26) is zero. If Φ + ΦH is positive
definite, the Lyapunov function V (w) = ||w − wopt||2 is decreas-
ing, since V̇ (w) ≤ 0 where the equality holds only at w = wopt.
Hence, wopt is a stable stationary point. From (26) for any vector
‰ = (ξ0 . . . ξL−1)

T

‰H(Φ + ΦH)‰ =
1

2π

Z 2π

0

˛̨X
i

ξiz
−i

˛̨2 ˛̨
G(z)

˛̨2
× S(z−1)

˛̨
Q(z)

˛̨2
Re Q(z−1)dω > 0 (27)

if from (23) the positive real condition

Re Q(ejω)
˛̨

w=wopt
= Re(1 − e−jωA(ejω)) > 0 for all ω (28)

holds for the scheme in Fig.2.

4. UNBIASED IDENTIFICATION OF THE FEEDBACK
PATH

Based on the expression (23) methods for separating the parameters
of the feedback path transfer function H(z) are proposed. We as-
sume that the stationary process d(n) is expressed as an innovation
representation

d(n) = ε(n) + r1ε(n − 1) + r2ε(n − 2) + · · · , (29)

where ε(n) is white noise with zero mean and variance σ2. Hence,
from (14)

R(z) = 1 + r1z
−1 + r2z

−2 + · · · (30)

and [zR(z)]+ = r1 + r2z
−1 + · · · . So from (23) we have

B(z) =
r1 + r2z

−1 + · · ·
Gc(z)

. (31)

If d(n) is a (q − 1) th order MA process, that is, d(n) = ε(n) +
r1ε(n − 1) + · · · + rq−1ε(n − q + 1), then

Wopt(z) =
r1 + r2z

−1 + · · · + rq−1z
−q+2

Gc(z)

+ z−q+1H(z). (32)

Moreover, if Gc(z) is constant, the parameters of H(z) in (7) are
readily identified from the (q − 1) th to (q + M − 2) th order coef-
ficients of Wopt(z). This fact was stated in [5] by simulation results
without any theoretical explanations. If Gc(z) is not constant, we
write (32) as

Wopt(z)Gc(z) =r1 + r2z
−1 + · · · + rq−1z

−q+2

+ z−q+1H(z)Gc(z). (33)

This means that filtering Wopt(z) by Gc(z) gives the MA parame-
ters by its zeroth to (q−2) th coefficients and filtering the remaining
part, that is, from the (q − 1) th to (q + M − 2) th coefficients by
1/Gc(z) gives the parameters of H(z).

When d(n) is a (q − 1) th order AR process

d(n) = P−1(z)ε(n), (34)

where

P (z) = 1 + p1z
−1 + · · · + pq−1z

−q+1, (35)

then from (29) it follows that

R(z) =
1

P (z)
. (36)

In this case, we have

Wopt(z)Gc(z) = r1 + · · · + rq−1z
−q+2

+ rqz
−q+1 + · · · + rq+M−1z

−q−M+2 + · · ·
+ z−q+1H(z)Gc(z). (37)

Again, we obtain r1, . . . , rq−2 as the zero th to (q−2) th coefficients
of Wopt(z)Gc(z) and then from (36) p1, . . . , pq−1 are obtained by

p1 = −r1 (38)

pi = −ri −
i−1X
k=1

pkri−k (2 ≤ i ≤ q − 1). (39)

Using these p1, . . . , pq−1, ri(i = q, . . . , q +M −1) are determined
by

ri = −
q−1X
k=1

pkri−k (q ≤ i). (40)

Next subtracting these from the q th to (q + M − 1) th coefficients
of Wopt(z)Gc(z) and finally filtering the resulting coefficients by
1/Gc(z) gives the coefficients of H(z). The stability condition
in (28) is just the positive realness of R(ejω) for the MA case or
P (ejω) for the AR case.

5. SIMULATION RESULTS

To see the convergence characteristics of the above algorithms and
the two-channel algorithm in [3] for the AR case, some simulation
results are presented. The latter algorithm is based on the idea of us-
ing the two-channel signals x(n) and y(n) in Fig.1. By minimizing
the mean square of C(z)y(n)−D(z)x(n) = C(z)(1/P (z)ε(n) +
H(z)x(n)) − D(z)x(n) with respect to the polynomials C(z) and
D(z) where C(z) is monic, i.e., the constant term is 1, the optimal
ones are given by Copt(z) = P (z) and Dopt(z) = Copt(z)H(z).
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Fig. 3. The misalignment of the proposed algorithm for the MA
case.
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Fig. 4. The misalignment of the proposed algorithm for the AR case.
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Fig. 5. The misalignment of two-channel algorithm for the AR case.

Hence, from Dopt(z)/Copt(z) = P (z)H(z)/P (z), H(z) is ob-
tained. This shows that the two-channel algorithm relies on the pole-
zero cancellation which may slow down the speed of convergence.

We use the following performance index called as the misalign-
ment

ζ =

M−1X
i=0

(hi − ĥi)
2

,
M−1X
i=0

h2
i (41)

where ĥi is the estimate of hi. The step size µ for each algorithm
is taken so that the stead-state ζ is -20db. Fig.3 shows the plots of
ζ of the proposed algorithm versus the iteration number averaged
over 100 realizations for a 4 th order MA process with a 5 th order
feedback path (q = 5, M = 5) with µ = 1.0 × 10−3. Fig.4 shows
the corresponding result for a 4 th order AR process with the same
feedback path and µ = 1.0×10−3. Fig.5 shows the result of the two-
channel algorithm in [3] for the same situation with that of Fig.4 with
µ = 1.0 × 10−3. Comparing Figs 4 and 5, the proposed algorithm
converges considerably faster than the algorithm in [3].

6. CONCLUSION

We have presented a direct method considering the causality con-
straint for obtaining a stationary point and the corresponding stabil-
ity condition of the conventional adaptive filter for cancellation of
the effect of the feedback path in hearing aids. This method can be
used for analyzing other adaptive algorithms in feedback systems.
Then, a method for separating the impulse response of the feedback
path from the adaptive filter weights has been proposed when the
incoming signal is an MA or an AR process. It has been shown
by simulations that the proposed algorithm converges considerably
faster than the existing algorithm.
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