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ABSTRACT

Echo cancellers are in wide use in both electrical (four wire to two
wire mismatch) and acoustic (speaker-microphone coupling) ap-
plications. One of the main design problems is the control logic
for adaptation. Basically, the algorithm weights should be frozen
in the presence of double-talk and adapt quickly in the absence of
double-talk. The control logic can be quite complicated [1] since
it is often not easy to discriminate between the echo signal and the
near end-speaker. This paper derives a log Likelihood Ratio Test
for deciding between double-talk (freeze weights) and a channel
change (adapt quickly) using a stationary Gaussian stochastic in-
put signal model. The probablity density function of a sufficient
statistic under each hypothesis is obtained and the performance of
the test is evaluated as a function of the system parameters. The
Receiver Operating Characteristics indicate that it is difficult to
correctly decide between double-talk and a channel change based
upon a single look. However, post-detection integration of approx-
imately one hundred sufficient statistic samples yields a detection
probability close to unity with a small false alarm probability.

1. INTRODUCTION AND PROBLEM FORMULATION

The echo cancellation problem has been studied by many authors
[1, 2, 3] for more than 30 years. The two main design problems
are 1) choice of adaptation algorithm(s), and 2) control logic for
adaptation. The latter design problem is caused by double-talk.
The echo canceller (EC) observes the channel input vector and the
scalar error signal. The error signal can consist of both double-talk
(near end speaker) and/or the uncancelled signal due to the far-end
speaker. Specific control logic involves monitoring the error sig-
nal as well as the channel input vector (to handle nonstationari-
ties of the voice signal). Significant increases in the error signal
power can be due to either double-talk or a channel change (ig-
noring voice nonstationarities). The algorithm weights should be
frozen in the presence of double-talk and adapt quickly when there
is a channel change.
The control logic can be quite complicated [1] since it is often
difficult to discriminate between the echo signal and the near-end
speaker. The primary problem is due to the nonstationarity of the
channel input. There are many schemes described in both [1] and
[3] for deciding when to adapt the adaptive filter weights [4, 5].
Suffice to say, to our knowledge, these or other schemes are not
based on any optimum statistical test such as a Likelihood Ratio
Test (LRT) [6].
This paper derives a LRT for deciding between doubletalk (freeze
weights) and a channel change (adapt quickly) using a stationary

Gaussian stochastic signal model. The LRT is then simplified to a
sufficient statistic to obtain an optimum test statistic. The proba-
bility density function (pdf) of the test statistic under each hypoth-
esis is obtained and the performance of the test statistic is evalu-
ated as a function of the system parameters. This performance is
represented thru Receiver Operating Characteristic (ROC) curves
[7]. These curves show the Probability of Detection (PD) (decid-
ing one hypothesis is true when it is actually true) vs. Probability
of False Alarm (PFA) (deciding the same hypothesis is true when
it is actually not true). The ROC’s indicate that it is difficult to
correctly decide between doubletalk and a channel change based
upon a single look. However, post-detection integration of about
one hundred successive LRT samples yields a PD close to unity
(.99) with a small PFA (.01).
The stationary signal model is not necessarily representative of
speech since speech is highly non-stationary. However, as is usu-
ally the case with parametric signal models, the theoretical results
are suggestive of good signal processing techniques. For example,
the theoretical results for the optimum LRT provide upper bounds
on the performance of any other test, i.e. one cannot do any better
with any other test.
A particular EC structure (Figure 1) is assumed in order to obtain
good estimates of the many parameters needed for the LRT. The
EC consists of a non-adaptive main filter and an adaptive shadow
filter [4]. The output of the main filter is subtracted from the echo
to obtain the cancelled echo. The shadow filter weights are adapted
continuously and periodically transferred to the main filter using
control logic based on measurements of various input parameters
such as the far-end signal and received echo powers [8].

2. THE HYPOTHESIS TEST

Two of the primary signals that the EC uses for the control logic are
the error signal em(n) (canceller output) and es(n) (shadow filter
error signal). Whenever the powers of the error signals increase
significantly over some quiescent level, the EC needs to decide
whether the increase is due to doubletalk or to a channel change.
Either occurence will cause a significant increase in the error pow-
ers. A statistical test is defined in what follows which models these
two possible events. It is assumed that the EC in Figure 1 is able
to accurately estimate the powers of the background noise, signal,
and double-talk. These powers are assumed time-invariant for the
data in the hypothesis test.

2.1. Signal and channel models

The channel input vector is of dimension N × 1, with covariance
matrix E[X(n)XT (n)] = σ2

xIN (IN is the N × N identity ma-
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trix). The channel output is a scalar y(n). X(n) and y(n) are zero
mean jointly Gaussian vectors. Let

H1 : y(n) is due to doubletalk

H0 : y(n) is due to a channel change
(1)

Under H1,

y(n) = X
T (n)H1 + n0(n) + n1(n),

where H1 is an unknown channel which has been correctly iden-
tified prior to time n using the adaptive shadow filter and trans-
ferred to the main channel filter. n0(n) is the additive station-
ary zero mean white Gaussian noise, independent of X(n) with
E[n2

0(n)] = σ2
0 . n1(n) is a second additive zero mean white

Gaussian noise modeling double-talk, independent of both X(n)
and n0(n) with E[n2

1(n)] = σ2
1 . Under H0,

y(n) = X
T (n)H0 + n0(n),

where H0 is a new unknown channel which is identified adap-
tively after time n using the shadow filter. It is assumed that no
transfer from the shadow filter to the main filter occurs until after
the hypothesis test has been performed. Thus, H1 is the main filter
weight vector and H0 is the shadow filter weight vector after con-
vergence. Hence, all the parameters are known for the hypothesis
test. Straightforward computations allow to obtain

E[y2(n)|H1] = σ2
xHT

1 H1 + σ2
0 + σ2

1 ,
E[y(n)X(n)|H1] = σ2

xH1,
E[y2(n)|H0] = σ2

xHT
0 H0 + σ2

0 ,
E[y(n)X(n)|H0] = σ2

xH0.

(2)

The joint pdf of y(n) and X(n) is Gaussian such that

p[y(n), XT (n)|H1] ∼ N (0, R1),
p[y(n), XT (n)|H0] ∼ N (0, R0),

(3)

where R1 and R0 can be written

R1 = σ
2
xIN+1 + σ

2
x

�
HT

1 H1 +
σ2

0
+σ2

1

σ2
x

− 1 HT
1

H1 0

�
, (4)

R0 = σ
2
xIN+1 + σ

2
x

�
HT

0 H0 +
σ2

0

σ2
x

− 1 HT
0

H0 0

�
. (5)

The second matrices in (4) and (5) are of the form

Mk =

�
ak HT

k

Hk 0

�
,

where k = 0, 1 and

a1 = HT
1 H1 +

σ2

0
+σ2

1

σ2
x

− 1,

a0 = HT
0 H0 +

σ2

0

σ2
x

− 1.

2.2. The Log LRT

By denoting v(n) = [y(n), XT (n)], the log LRT for (3) rejects
hypothesis H1 when

ln

�
p(v(n)|H1)

p(v(n)|H0)

�
=

1

2
v(n)

�
R

−1

0 − R
−1

1

�
v(n)T +

1

2
ln

�
|R0|

|R1|

�

exceeds an appropriate threshold ([6], chapter 2). Since the last
term in this expression is not a function of the observables, the log
LRT simplifies to

(y(n), XT (n))T {R−1

0 − R
−1

1 }

�
y(n)
X(n)

�
H0

≶
H1

T1, (6)

where T1 is a threshold setting determined by the probability of de-
tection PD and the probability of false alarm PFA. The detection
strategy (6) can be simplified as follows [7]

γ
�
y(n), XT (n)

�
= y(n)z(n)

H0

≶
H1

T, (7)

where γ is the sufficient statistic of the test (6), T is the new test
threshold and

z(n) = Ky(n) + 2αXT (n)H1 − 2βXT (n)H0,
K = k1 + k2 − k2 − k4, α = k1

λ11
+ k2

λ21
, β = k3

λ10
+ k4

λ20
,

λ1,k = 1

2
(ak +

�
a2

k + 4HT
k Hk),

λ2,k = 1

2
(ak −

�
a2

k + 4HT
k Hk),

k1 = λ11

1+λ11

λ2

11

λ2

11
+HT

1
H1

, k2 = λ21

1+λ21

λ2

21

λ2

21
+HT

1
H1

,

k3 = λ10

1+λ10

λ2

10

λ2

10
+HT

0
H0

, k4 = λ20

1+λ20

λ2

20

λ2

20
+HT

0
H0

.

(8)
Thus, the sufficient statistics is the product of two zero mean corre-
lated Gaussian variates. y(n) is the channel output at time n. z(n)
is a linear combination of the scaled channel output, the scaled
output of the shadow filter and the scaled output of the main filter.

3. PDF OF THE SUFFICIENT STATISTIC

Since v(n) = [y(n), XT (n)] is a zero mean Gaussian vector, it
follows that y(n) is a zero mean scalar Gaussian variate with vari-
ance given by (2) under the two hypotheses. z(n) is is also a zero
mean scalar Gaussian variate with a variance that can be com-
puted from its expression in (8). [y(n), z(n)] is linearly related
to [y(n), XT (n)] thru the matrix relation�

y(n)
z(n)

�
=

	
1 0
K 2αHT

1 − 2βHT
0


�
y(n)
X(n)

�
.

Thus, [y(n), z(n)] is a Gaussian vector with mean [0, 0] and co-
variance matrix Σi under hypothesisHi (i = 0, 1). More precisely

Σi =

	
1 0
K 2αHT

1 − 2βHT
0



σ

2
xMi

	
1 K

0 2αH1 − 2βH0



,

= σ
2
x

	
mi

11 mi
12

mi
21 mi

22



,

where

m
i
11 = a1, m

i
12 = Kai + 2H

T
i (αH1 − βH0) = m

i
21

m
i
22 = K

2
ai + 4K(αH

T
i H1 − βH

T
i H0) +

4(αH
T
1 − βH

T
0 )(αH1 − βH0)

The joint pdf of [y(n), z(n)] under hypothesis Hi can be written

pi(y, z) =
1

2π
�

|Σi|
exp

�
−

1

2
(y, z)Σ−1

i

�
y

z

��
,

III ­ 733



where

Σ−1

i =
1

σ2
x(mi

11m
i
22 − mi

12m
i
21)

�
mi

22 −mi
12

−mi
21 mi

11

�
.

Since y and z are jointly Gaussian with zero means, the pdf of the
product u = yz is given by [9, p. 45]

pi(u) =

�
|Σ−1

i |

π
exp

�
−u(Σ−1

i )12
�
K0

�
|u|
�

(Σ−1

i )11(Σ
−1

i )22

�
,

where K0 is the modified Bessel function of the second kind and
of zero order.

4. PERFORMANCE CURVES

4.1. Theoretical curves

The performance of the sufficient statistic can be defined by the
two following probabilities [6, p. 38]

PD = P [accepting H1 |H1 is true] =

� ∞

T

p1(u)du, (9)

PFA = P [accepting H1 |H0 is true] =

� ∞

T

p0(u)du. (10)

Thus, for each value of T , there exists a pair (PFA, PD). The
curves of PD as a function of PFA are called Receiver Operating
Characteristics (ROC curves) [6, p. 38].

4.2. Monte Carlo simulations

Ten thousand Monte Carlo simulations have been run for the suf-
ficient statistic in (7) as a check on the theoretical results. Figure
2 shows some typical ROC curves for N = 1024 and different
parameter selections. H0 and H1 are two sided exponential chan-
nels with Hi(j) = (0.5)|j|c, j = 0,±1, .... The parameter c is
defined by the filter gain which is here HT

1 H1 = HT
0 H0 = 0.1.

The filters differ only in a bulk delay of 200 taps.
Excellent agreement between the theory and MC simulations was
obtained over all values of PD and PFA. Figure 2 shows the
ROC curves for different double talk powers, no additive noise
and HT

1 H0 = 0. A PD approaching unity results in a fairly large
PFA. The poor behavior is because 1) the sufficient statistic is
non-coherent (quadratic in the data) and 2) only one time sample
of the data vector is used in making the decision.

4.3. Using the MC simulations to predict the theory

Some numerical integration problems were encountered using (9)
and (10). Thus, because of excellent agreement between theory
and MC simulations, the ROC curves were generated from the
MC simulations instead. Figure 3 shows the effect of decreasing
the background noise power. The performance improvement ap-
proaches the top curve as the background noise power approaches
zero. Hence, the hypothesis test in (1) is not noise limited. Fig-
ure 4 shows that the performance does not increase monotonically
with increasing levels of double-talk. This effect occurs because
of the non-coherent nature of the sufficient statistic.

5. POST-DETECTION INTEGRATION

The previous ROC curves suggest that one time sample is not
enough to make a reliable decision. Thus, one would like to derive
the sufficient statistic for p time samples of the vector [y(j), XT (j)]
for j = n−p+1 to n. The problem is that inversion of the covari-
ance matrix is extremely difficult. A way to avoid this statistical
problem is to use the MC simulations. Consider the time averaged
sufficient statistic

Γ(n) =
1

p

n�
m=n−p+1

y(m)z(m). (11)

Ten thousands MC simulations of (11) were run for different val-
ues of p and σ2

0 = σ2
1 = 1. Figure 5 shows that p = 100 yields an

excellent ROC curve.
It should be noted that the simpler problem of detecting double-
talk only is a special case of what has been studied here. One need
only to set H0 = H1 in our model and proceed to generate ROC
curves etc ...

6. RESULTS AND CONCLUSIONS

This paper has derived the LRT for deciding between double-talk
(freeze weights) and a channel change (adapt quickly) for a sta-
tionary Gaussian stochastic input signal model. The pdf of the
sufficient statistic under each hypothesis was obtained and the per-
formance of the sufficient statistic was evaluated as a function of
the system parameters. The ROC’s indicate that it is difficult to
correctly decide between double-talk and a channel change based
upon a single look. However, Monte Carlo simulations of the post-
detection integration of approximately one hundred sufficient sta-
tistic samples yields a detection probability close to unity (.99)
with a small false alarm probability (.01). Thus, use of an LRT
based test to decide between a channel change or double-talk of-
fers a significant improvement in EC performance.
The LRT is highly parametric and requires detailed statistical in-
formation about the input under both hypotheses. This will not be
the case in a real echo cancellation environment. Thus, any prac-
tical application of the LRT to an Echo Canceller will suffer per-
formance degradation as compared to the ROC curves presented
here. These degradations are due to the difficulty of the EC to
accurately estimate these parameters in an actual voice signal en-
vironment. However, the real value of the ROC curves is to upper
bound the performance of any less-than-optimum system. Thus,
the ROC curves presented here can be of great value to an EC de-
signer even though they may not match precisely the parameters
of the environment.
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Fig. 1. Basic Echo Canceller Structure.
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Fig. 2. Comparison of Theory and Monte Carlo Simulations. PD

versus PFA for different doubletalk power levels σ2
1 for σ2

0 =
0, N = 1024 and orthogonal channels.
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Fig. 3. PD versus PFA (MC simulations) for different values of
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0 , σ2
1 = 1, N = 1024 and orthogonal channels.
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Fig. 4. PD versus PFA (MC simulations) for different values of
σ2

1 , σ2
0 = 0.001, N = 1024 and orthogonal channels.
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