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ABSTRACT

In this paper, a noise analysis of a modulated quantizer is 

performed. If input signals are oversampled, then the 

quantization error could be reduced by modulating both the 

input and the output of the quantizer. The working principle 

is based on the fact that convolutions of bandpass signals 

would spread wider in the frequency spectrum than that of 

lowpass signals. Hence, by filtering the high frequency 

components, the signal-to-noise ratio (SNR) could be 

increased. Numerical simulation results show that the 

modulated quantization scheme could achieve an average of 

13.0960dB to 21.4700dB improvements on SNR over the 

conventional scheme, depends on the types of bandlimited 

input signals. 

1. INTRODUCTION 

Quantization is widely employed in many signal processing 

applications, such as in data compression [1] and analog-to-

digital conversion [2], etc. However, as quantization is not a 

reversible process because it is a many-to-one mapping, the 

system cannot be recovered once it is generated [3]. Hence, 

it is very important to minimize the quantization error. 

The most common method to minimize the quantization 

error is based on the statistics of input signals [4]. Finer 

resolutions are assigned to the ranges of input signals which 

occur most frequently, and vice versa. However, this kind of 

quantization scheme requires a prior knowledge of statistics 

of inputs signals. In many situations, the statistics of input 

signals are unknown and this method cannot be applied 

directly. 

Another common method to minimize the quantization error 

is via a sigma delta modulation technique [5]-[7]. If input 

signals are oversampled, then the signal band is very 

narrow. Hence, the overlap between the noise spectrum and 

the signal band is small. As a result, a very high SNR can be 

achieved. In this paper, we further utilize the oversampling 

technique to reduce the quantization error. The input and the 

output of a quantizer are modulated via a bank of 

modulators. Based on the obtained numerical simulation 

results, an average of 13.0960dB to 21.4700dB 

improvements on SNR over the conventional scheme can be 

achieved. 

The outline of this paper is as follow: In Section 2, an 

approximated model for the quantizer is introduced. Based 

on the model, detail error analysis is performed. It is shown 

that the quantization error could be reduced by applying a 

modulation technique on the input and output of the 

quantizer. In Section 3, we further extend the results in 

Section 2 from a single modulator to a bank of modulators. 

Finally, a conclusion and future work is summarized and 

discussed in Section 4. 

2. REDUCTION OF NOISE VIA MODULATED 

QUANTIZER 

The block diagrams of systems using a conventional 

quantizer and a modulated quantizer are shown in, 

respectively, Figure 1a and Figure 1b. Denote the input to 

these two quantizers, the quantizers, the frequency response 

of these two linear time-invariant filters, the output of the 

conventional quantizer, that of the modulated quantizer, the 

reconstructed signal using the conventional quantizer, and  

that of using the modulated quantizer as, respectively, ku ,

Q , H , ks1
, ks2

, ky1
 and ky2

. We assume that 

ku  is oversampled. That means, most of the energy of 

ku  is within the frequency band 
RR

, , where R  is the 

oversampling ratio. Consider an N  bit quantizer with the 

quantization range LL, . Then 
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ysign
, yceil  denotes the rounding 

operator towards the plus infinity,  denotes the absolute 

operator, and 
12N

L  is the step size of the quantizer. To 

approximate yQ  as a polynomial of y , denoting 

TMyyy 123y  and T

Mpp1p , where the 

superscript T  denotes the transpose operator,
mp  for 

Mm ,,2,1  and 12M  are, respectively, the coefficients 

and the order of the polynomial of y , then p  can be found 

via solving the optimization problem with the objective 

being minimizing the total absolute square difference 

between the actual quantizer and the approximated 

quantizer, that is: 

p
min

L

L

T dyyQ
2

py . (2) 

The solution of this optimization problem is bAp 1 ,

where
L

L

T dyyyA 2  and 
L

L

dyyQ yb 2 . Figure 2 shows 

examples of input-output relationships of actual quantizers 

with 1L  and the approximated quantizers pyT  with 

10M  for 1-bit, 2-bit and 8-bit cases. Figure 3 show the 

corresponding differences, that is pyTyQ . It can be seen 

from Figure 3 that the differences between the actual 

quantizers and the approximated quantizers get smaller and 

smaller as N  increases. Hence, the approximation is valid. 

Now, let’s analyze the quantization noise using the above 

approximated model. That is, replacing the actual quantizer 

yQ  by the approximated quantizer pyT . Denote the 

Fourier transform of ku , ks1
, ks2

, ky1
 and ky2

 as, 

respectively, U ,
1S ,

2S ,
1Y  and 

2Y . Denote 

UUU m 12
, where  denotes the 

convolution operator and there are 12m  terms in 
12mU .

For the                                       system with the 

conventional quantizer shown in Figure 1a, 
M

m

mmUpHSHY
1

1211
. (3) 

Since we assume that ku  is oversampled, U  is 

approximately bandlimited within 
RR

, . As a result, 

12mU  is approximately bandlimited within 

R

m

R

m 12
,

12 . However, since all these M  terms 

have zero center frequency, all the higher order terms are 

overlapped to the signal band 
RR

, . If we regard all 

higher order terms ( 2m ) as the quantization noise, then 

the quantization noise would corrupt the signal seriously. 

Since
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if we further assume that H  is an ideal lowpass filter 

with 

otherwise
RH

0

1 , then 
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which would be quite low for the conventional quantizer. 

Now consider the system with modulators as shown in 

Figure 1b. Denote the input to the quantizer as ku~  and 

UUU m

~~~
12

, in which there are 12m  terms 

in 
12

~
mU . Then 
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where ! denotes the factorial operator. Hence, 
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If
0
 are selected in such a way that 

R

M 12
0

, then 

the mirror signals 
012 2 rmU m

 for mr 2,1,0

and for Mm ,2,1  do not overlap each others in the 

frequency spectrum. Hence, (6a) can be further simplified 

as:
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By comparing (4b) to (6b), the modulated system will 

provide improvement on SNR compared to the conventional 

system. 

To verify the approximations and the above analysis, we 

have performed some simulation results. Denote ku  by a 

random signal with zero mean uniform distribution between 

-1 and 1. The bandlimited input is generated via filtering 

ku  through H  and normalizing the maximum absolute 

value to 1, that is 
K

HU
U , where U  is the 

Fourier transform of ku  and K  is selected such that 

1max
0

ku
k

. In the following simulation results, we choose 

an elliptic filter with the following transfer function: 

54321

543214

8785.05036.42392.94816.98675.41

0761.02027.01283.01283.02027.00761.010

zzzzz

zzzzz
zH

as the ideal lowpass filter because this filter can be obtained 

easily from the Matlab toolbox. Also, the saturation level of 

the quantizer is selected as 1, that is 1L . This is because 

of the normalization reason. Moreover, we select the 

oversampling ratio as 64R  because this is the most 

common value employed in industry. Figure 4 shows the 

improvements of SNR of the modulated quantizer over the 

conventional quantizer, where 

0
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SNR
 for 2,1i . It is worth noting 

that the equation for calculating SNR here is different from 

that in the previous Section because the one in the previous 

Section is based on the approximated model, while the one 

in this Section is from the definition. According to the 

simulation results, it can be seen from Figure 4a that there is 

an average of 5.3136dB improvement when 
R

0
 and 

5.6084dB improvement when 
R

3
0

, but there is no 

significant change on the improvement when the 

modulating frequency is higher than 
R

3 . Compared to the 

theory we have developed, that is, if 
R

M 12
0

 and 

2

2

0 !
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, then the SNR could be improved, it 

is interesting to see from Figure 4a that when 
R

3
0

 it is 

already enough to satisfy the condition. Besides, there is an 

average of 6.9007dB improvement when 1N  and the 

average improvement drops monotonically and converges to 

5.3070dB when 16N . This is because as N  increases, the 

effects of nonlinearity decrease. As a result, the 

improvement based on the modulation technique will be less 

significant. Figure 4b shows the corresponding results for a 

sinusoidal input 
R

k
ku

3

2
sin  for 0k . We choose this 

sinusoidal input because this operating frequency is the 

most common test frequency employed for the analog-

digital conversion and the magnitude of the sinusoidal input 

is chosen to be 1 because of the normalization reason. It can 

be seen from Figure 4b that there is an average of 5.3821dB 

improvement when 
R

0
 and 5.7670dB improvement 

when
R

3
0

, but there is no significant change on the 

improvement when the modulating frequency is higher than 

R

3 . This phenomenon occurs similarly for the bandlimited 

random input case. However, we observe that there is an 

average of 4.8981dB improvement when 1N  and the 

average improvement increases and converges to 5.7619dB 

when 16N  for the sinusoidal input. 

3. EXTENSION FROM A SINGLE MODULATOR TO 

A BANK OF MODULATORS 

The technique discussed in Section 2 can actually be further 

extended to the case if a bank of modulators is employed. 

Denote 
qN  as the number of modulators employed in the 

system as shown in Figure 5. Figure 6 show simulation 

results of various quantizers with same values of L , R , and 

the filter as in the previous Section. It can be seen from 

Figure 6a that there is an average of 6.2730dB improvement 

when 1qN  and the average improvement increases and 

converges to 11.0943dB when 40qN . Besides, there is an 

average of 19.6950dB improvement when 1N  and the 

average improvement decreases monotonically and 

converges to 9.4297dB when 16N  for a bandlimited 

random input. Figure 6b shows the corresponding results for 

a sinusoidal input. It can be seen from Figure 6b that there is 

an average of 5.7679dB improvement when 1qN  and the 
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average improvement increases and converges to 

11.0636dB when 40qN . Besides, there is an average of 

12.1371dB improvement when 1N  and the average 

improvement decreases monotonically and converges to 

10.3246dB when 16N . According to the simulation 

results, it is found that the highest improvement occurs at 

1N  and 30qN  for both a bandlimited random input and 

a sinusoidal input. The corresponding improvements are 

21.4700dB and 13.0960dB, respectively. 

4. CONCLUSION 

In this paper, we propose to employ a bank of modulators 

for reducing the quantization error. Since bandpass signals 

spread wider in the frequency spectrum than that of the 

lowpass signals, quantization error could be reduced by 

filtering the high frequency components. Numerical 

simulation results show that an average of 13.0960dB to 

21.4700dB improvements on SNR over the conventional 

scheme could be achieved. It is worth noting that this 

technique is different from the dithering approach because a 

signal is added to the quantizer output for the dithering 

approach, while we propose to multiply a signal at the input 

and the output of the quantizer. 
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Figure 2. Input-output relationships of the original quantizers and 

the approximated quantizers. (a) 1-bit case. (b) 2-bit case. (c) 8-bit 

case. 

Figure 3. Differences between the original quantizers and the 

approximated quantizers. (a) 1-bit case. (b) 2-bit case. (c) 8-bit 

case. 

Figure 4. Effect of different number of bits of quantizers and 

modulating frequencies on the improvements of SNR. (a) a 

bandlimited random input. (b) a sinusoidal input. 

Figure 5. A system for noise reduction using a bank of modulators. 

Figure 6. Effect of different number of bits of quantizers and 

number of modulators on the improvements of SNR. (a) a 

bandlimited random input.(b) a sinusoidal input.
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Figure 1a. A system using conventional quantizer.
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Figure 1b. A system using modulated quantizer.
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