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ABSTRACT

The problem of maneuvering target tracking is addressed
in this paper. The main challenge in maneuvering target
tracking stems from the nonlinearity and non-Gaussianity
of the problem. The Singer model was used to model
the maneuvering target dynamics and abrupt changes in
the acceleration. According to this model, the heavy-
tailed Cauchy distribution driving noise is used to model
the abrupt changes in the target acceleration. The non-
linear, non-Gaussian Kalman filter was applied to this
problem. The algorithm is based on the Gaussian mix-
ture model for the posterior state vector. The nonlinear,
non-Gaussian Kalman filter for this problem was tested
using simulations, and it is shown that it outperforms
both the particle filter and the extended Kalman filter.

1. INTRODUCTION

Target tracking is a basic problem in radar, sonar and
infra-red (IR) applications. Since 1960 many methods
[1]-[2] have been proposed to solve the tracking prob-
lem. Most of the tracking algorithms are model-based
and use the knowledge about the target motion [3]. The
most popular model-based approach is dynamic state-
space (DSS) modeling. According to this approach, the
state vector contains the time-varying dynamics of the
target which is usually unobserved. The target tracking
problem can be interpreted as estimation of the system
state in a DSS model and thus the Bayesian approach
can be effectively used. According to this approach the
posterior probability density function (PDF) of the state
is derived. The optimal estimator in the minimum-mean-
square error (MMSE) sense can be found using the pos-
terior PDF. The Kalman filter (KF), which is optimal in
the MMSE sense for linear, Gaussian systems [4], is the
most popular tracking algorithm. Typically, the observa-
tion model in tracking systems is nonlinear because the
observations are given in polar coordinates. For non-
linear problems there is no general analytic expression
for the posterior PDF and only approximated estima-
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tion algorithms are studied [5]. The extended Kalman
filter (EKF) is the most popular approach for recursive
nonlinear estimation [4]. The main idea of the EKF is
first-order linearization of the estimation problem and
the posterior PDF is assumed to be Gaussian. In non-
linear systems the PDF of the state may be multi-modal.
The Gaussian approximation of this multi-modal distri-
bution leads to poor tracking performance.

Real radar tracking systems are rarely Gaussian due
to many other factors. For example, maneuvering target
might abruptly change its acceleration by sudden break
or steering [6]. Usually, a heavy-tailed distributed system
noise is used to model the abrupt changes of the system
state in a maneuvering target tracking applications. The
Cauchy distribution is typically used to model heavy-
tailed PDFs.

In 90’s, a new class of filtering methods was proposed
based on the sequential Monte Carlo (MC) approach for
nonlinear non-Gaussian problems, as an alternative to
linearized Kalman-type filters (see for example [5]). In
these techniques the filtering is performed recursively
generating MC samples of the state variables. The most
popular realization of the MC approach is the particle
filters (PF) which approximate the posterior distribu-
tion by a set of random samples with associated weights,
rather than using an analytic model [5]. The PF is ex-
tensively used for maneuvering target tracking (e.g. [6]).

Recently, the non-Gaussian Kalman filter was pro-
posed in [7]. This algorithm was shown to be optimal
under the minimum-mean-square error (MMSE) crite-
rion for non-Gaussian problem. The non-Gaussian lin-
ear DSS model in which the PDFs of the system initial
state, system noise, and the posterior state PDFs are
modeled by the Gaussian mixture model (GMM), was
assumed. Using the property that any PDF can be ap-
proximated by a mixture of finite number of Gaussians
[4], a recursive method based on the MMSE estimator for
GMM-distributed random vector was derived. This al-
gorithm estimates the posterior PDF of the system state
by the GMM, and therefore it can be effectively used for
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maneuvering target tracking.

In this work, the non-Gaussian Kalman filter was gen-
eralized to nonlinear problems, resulting the nonlinear,
non-Gaussian Kalman filter. The resulting nonlinear,
non-Gaussian Kalman filter algorithm is applied to the
problem of maneuvering target tracking with abrupt ac-
celeration changes. The target tracking problem is stated
in Section 2. The nonlinear, non-Gaussian Kalman filter
is briefly presented in Section 3. The maneuvering target
tracking performance of the proposed algorithm is eval-
uated and compared to the PF and the EKF in Section
4. Finally, our conclusions are drawn in Section 5.

2. TARGET TRACKING PROBLEM
FORMULATION

Maneuvering target dynamics can be modeled according
to the DSS approach as

a(s[n —1],uln]) , (1)
h(s[n], w(n]) , (2)

where the transition function a(-,-), and the observation
function, h(-,-), are known, and {s[n], n = 0,1,2,...}
and {x[n], n =0,1,2,...} are the state vector and the
observation sequences. The state vector consists of tar-
get position [r, r,]T, velocity [#; 7], and acceleration
[e 7]

s[n] =

x[n] =

s[n] = [ra[n] ryln] #2[n] 7y [n] 72 [n] 7y[n]] -

The Singer model [8] is widely used in the literature for
maneuvering target modeling [3]. This model assumes
that the target acceleration is a zero-mean first order
stationary Markov process. According to the discrete-
time Singer model the transition function in (1) is
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T is the sampling interval and a = % is reciprocal of the

maneuver time constant 7. According to this model, the
target position change is determined by its velocity. The
target velocity change is determined by its acceleration
and the acceleration change is driven by the system noise.
The system noise, u[n|, was assumed to be zero-mean
o, 0
0 o |
The abrupt changes of the maneuvering target accel-
eration were modeled by the driving noise with heavy-
tailed distribution, usually chosen to be i.i.d. with zero-
mean Cauchy distribution:

192
T2+ (y/2)2

Gaussian with covariance matrix I'y[n] = [

fu[n] (u) = (3)

Assuming that the radar is placed at the origin [0 0]7,
1

the radar measurements: range r[n| = (r2[n] + r2[n])=

and bearing 3[n] = arctan (Ty [n}) of the target are de-

rz[n)
scribed by the measurement function

([ ]) = ety

Tz N

+win] .

The initial state s[—1], a measurement noise w(n] and
the system noise u[n| are assumed to be independent.
The random vector s[—1] and the white measurement
noise have the following distributions:

s[—1]~GMM (asi[-1], py[-1], Ts[-1];l=1,..., L),
w(n]~N(0,Tw(n]) , (4)

where GM M (tm, yy; Ty = 1,..., M) denotes an
Mth-order complex Gaussian mixture distribution with
weights, {a.,}M_,, mean vectors, {u,,}M_;, and co-
variance matrices, {I',,}}Y_;. The PDF of a GMM-

distributed random vector y ~ GM M (Qtym, fyms Dym;m =

1,..., M) is given by

M
fy(y) = Z aqu)()’§0ym) »
m=1

where ®(y;0y.,,) is a complex Gaussian PDF and 6y,
contains the mean vector, p,,, and the covariance ma-
trix, Typ,.

3. SUMMARY OF THE NONLINEAR,
NON-GAUSSIAN KALMAN FILTER

Implementation of the nonlinear, non-Gaussian Kalman
filter, involves the following recursion.
1. Initialization:
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Initialize the L-order GMM parameters of the state vec-

tor at time instance n = —1.
as[_1| - 17775l[_1H asl[_” )
/J's[_1| - 1,77sl[_1H Il’sl[_l] )
I‘s[71| - Lnsl[*lﬂ = I‘sl[fl} .

Set n = 0.
2. Mixture parameters of nonlinear function:

e Generate an artificial da‘fa set}D from the condi-

sin—1
tional distribution of , given X[n — 1],

according to the PDF of s[n — 1]| X [n — 1] from the
previous step and PDF's of u[n| and w[n| given in
(3) and (4).

. . a(-,-)
o Apply the nonlinear function G(-) = ’
on D and obtain a new artificial data set D' =
G (D).

o Model the conditional distribution of [ ;[[Z]}

X[n — 1] using the new artificial data D’ by GMM
of order M, obtained using a model order selection
algorithm such as the minimum description length
(MDL) [9]. The following parameters are obtained
in this process

given

Oxm[n|={pz[nn — 1,7n[n]],Tx[n[n — 1,7, [n]]}
Osm[n|n — 1={pg[nn — 1,7m[n]], Tx[njn — 1, fm[n]]}
Osm[n|n — 1]={pg[n|n — 1 nm[ Il Ts[njn — 1,7, [n]]}
ag[njn — 1,7 [n]] , ax[nln — 1,4m[n] ,

Tsz[n|n — 1, 7m[n]]

3. Innovation:

The measurement prediction is calculated using these pa-
rameters as follows

M

> axlnln = 1iim[n]lpg(nin — 1,7 0],

m=1

X[njn — 1] =

and the innovation is calculated according to

x[nln —1] .

1, fjpm [n] ] TZ "

x[n] = x[n] —

4. Kalman gain: K,,[n] 2 Lsx[njn —

L, iy [n]].
Ha. Estimated state mixture parameters:

[n|n —

as[nln, i [n]] = — 2=ttt e PG )
D axlnln—1,fi, [n]]@(X[n];05,ms [n])
Pl i 0] = gl — 1, 7 ]
K0 (&[n] - pglnin = 1,in[n]])
L [nln, fim[n)) = Ts[nln — 1, ijm ]

— K [n|Tss[nn — 1,5 [n]]
vV m=1,...,M.

M
Z_:l as[n|n, iim[n]]ps[nln, m [n]].
6. Set n — n + 1, go to step 2.

The nonlinear, non-Gaussian Kalman filter algorithm is

schematically presented in Fig. 1.
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Fig. 1. The nonlinear, non-Gaussian Kalman filter

schematic diagram.

4. SIMULATION RESULTS

In this section, the performance of the nonlinear, non-
Gaussian Kalman filter, applied to the problem of ma-
neuvering target tracking, is evaluated and compared
to the PF and the EKF. The root-mean-square error
(RMSE) of the estimate of the system state vector was
used for performance evaluation.

The maneuvering target tracking was simulated for
N = 20 time instances with sampling interval T = 1
sec. The driving noise was modeled by Cauchy distrib-
ution with parameter v = 0.3. The covariance matrix
of the zero-mean Gaussian measurement noise was as-
sumed to be I'y[n] = 0.1I. The Singer model parameter
was assumed a = 0.1, which corresponds to evasive ma-
neuver. For estimation performance evaluation, each test
was performed over 100 trials. The initial system state
was assumed

s[-1/—1] = [1000010000 11 0.1 —0.1]"

For the nonlinear, non-Gaussian Kalman filter, the
conditional distribution of the state vector s[n|, given
X[n] was assumed to be GMM of order M = 12. The
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nonlinear, non-Gaussian Kalman filter is initialized at

time instance n = —1 for [ =1, ..., L with
- L1 = g
Qg s Tlsl - L )
IJ’S[_1| - 17n5l[_]‘]] 0 )

Ts[-1| — 1,n4[-1]] = 1000I.

In this example, the standard sampling importance re-
sampling (SIR) PF was used [5] with 10000 particles. For
the EKF, the conditional distribution of the state vec-
tor s[n], given X[n] was assumed to be Gaussian. The
parameters of this PDF were initialized with

psl-1 -1 =0,
T'y[—1| — 1] = 10001 .
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Fig. 2. the nonlinear, non-Gaussian Kalman filter vs.
PF and EKF maneuvering target tracking performance.

The tracking performance of the nonlinear, non-Gaussian

Kalman filter, PF and EKF in terms of RMSE are pre-
sented in Fig. 2. This figure shows the estimation per-
formance of the maneuvering target’s position, velocity
and acceleration in two-dimensional space. It can be ob-
served that the PF outperforms the EKF, and the non-
linear, non-Gaussian Kalman filter outperforms both of
them.

5. CONCLUSION

In this work, the nonlinear, non-Gaussian Kalman fil-
ter was applied to the problem of maneuvering target

tracking with abrupt acceleration changes. These abrupt
changes are modeled by the heavy-tailed Cauchy distrib-
ution. The Singer model was used for maneuvering tar-
get modeling. Tracking performance of the nonlinear,
non-Gaussian Kalman filter was compared to the PF and
the EKF via simulations and it is shown that the non-
linear, non-Gaussian Kalman filter outperforms both the
PF and the EKF.
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