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ABSTRACT

We study the link between networks of the pooling type and
the problem of quantification. Pooling networks consist in
parallel processors that are summed after having processed
the same information. If the processors are simple threshold
model of noisy neurons, the behavior of the network has the
behavior of a quantizer. Using the compander approach to
quantizers as well as the notion of density of levels, we study
these networks and show that they are asymptotically equiv-
alent to quantizers. Furthermore, we show how these devices
can be infomax processors.

1. INTRODUCTION

Pooling networks of neurons are a special type of neural net-
works that process N times the information and merge the
processing in some way (usually an average). This architec-
ture, depicted in figure (1) occurs in many parts of the sen-
sory pathway of the human (e.g. in the auditory pathway, in
the visual pathway [1, 2, 3, 4],. . . ). Each neuron can be mod-
eled using sophisticated Hodgkin-Huxley equations, but to be
able to study the flow of information, we adopt a very sim-
plified model: a neuron is a noisy nonlinear threshold model.
This simplification allows to incorporate the fluctuations of
the neural system as well as one of the fundamental feature
of neurons, the threshold. Indeed, a neuron sends informa-
tion when one of its state variables, the membrane voltage,
exceeds some threshold. Further, this particular architecture
also exists in some engineering fields: dimus arrays in sonar
[5, 6], flash analog-to-digital converters [7] are some exam-
ples.

Pooling networks have been studied in the physics lit-
erature [8, 9]. They possess the strange property of noise-
enhanced processing, meaning that the performance of the
processing of information has a non monotonic behavior as
a function of the fluctuations intensity. Therefore, there exists
an optimal power of the fluctuations for which the processing
is optimal. Furthermore, as mentioned in [8], there is a close
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relationship between pooling networks and quantization. In-
deed, the conjunction of the additive noise term ni and the
threshold θ can be viewed as a random quantization on 1 bit.
If N is the size of the networks, summing leads to a random
quantization over N bits. Quantizers are nonlinear settings
that discretize the amplitude of an input. In most practical
situations, a quantizer can be decomposed as the cascade of
a compressor nonlinear device that adapt the dynamic of the
input, followed by a uniform quantization and an expansion
nonlinearity that brings back the amplitude in the dynamic
range of the input. This decomposition is called the compan-
der model and is illustrated in figure (1).
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Fig. 1. The compander representation of a scalar quantizer
(top). Pooling networks of noisy threshold devices are simple
models for pooling networks of real neurons (bottom).

The aim of the paper is to go further in the analogy be-
tween pooling networks and quantization, using the compan-
der model for quantizers. We show the asymptotic equiv-
alence in law of the devices, and derive asymptotic input-
output information theoretic based relationships which allow
to stress the importance of the noise in the network and of the
compressor in the quantizer.

In the following section, we recall some facts on quan-
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tizers and pooling networks, facts which help us in section 3
to show the asymptotic equivalence of the two devices. The
equivalence is studied in terms of the probabilistic structure
of the output as well as information theoretic arguments.

2. SOME FACTS ON QUANTIZERS AND POOLING
NETWORKS

We recall here some known facts on quantizers and pooling
networks. This allows the setting of some notations and in-
troduce some concepts for unfamiliar readers.

2.1. Quantizers

Scalar quantizers are defined by a set of thresholds ti, i =
0, . . . , N and a set of levels qi, i = 1, . . . , N such that the
quantization of a variable x is y = Q(x) = qi1(ti−1,ti](x)
where 1I(x) stands for the characteristic function over inter-
val I . By convention, t0 = −∞ and tN = +∞. Further-
more, we will consider here regular quantizers for which qi ∈
(ti−1, ti]. For this type of quantizers, it is easy to show that Q
can be decomposed as Q = G−1◦U ◦G where U is a uniform
quantizer ( ti − ti−1 = ∆, q1 = t1 − ∆/2, qi − qi−1 = ∆),
G a bijective function which can be chosen smooth enough,
and which compresses the dynamics of the input, and ◦ is
the composition of functions. The inverse of G is called an
expander, and the full decomposition is known as the com-
pander approach to quantization [10].

An important aspect of quantizers is the asymptotic the-
ory, also know as fine or high-rate quantization [10, 11, 12].
In this approach, the number of levels grows to infinity, and
the levels are described by a density instead of their precise
location. The density of levels is assumed to exist and is de-
fined as limN→+∞{#q ∈ [q, q + dq)}/N = λ(q) (# for
number of). There is a close relationship between density λ
and the compressor function G. Indeed, G sends the inter-
val (ti−1, ti] of length ∆i onto an interval of fixed length ∆,
and therefore G(ti) − G(ti−1) = ∆ = T/N where T is the
quantizer dynamical range. But in an interval of length ∆q ,
there are about λ(q)N∆q levels and therefore in this interval,
the length between levels is approximately ∆i = 1/Nλ(q).
Therefore, as N grows we get G′(q) = ∆/∆i = Tλ(q): the
compressor is the cumulative density function of density λ (if
T=1).

2.2. Pooling networks

Pooling networks have been extensively studied by N. Stocks.
The probabilistic structure of the output is quite simple to ob-
tain. Indeed, the N variables ni are assumed independent and
identically distributed. The output yP is then conditionally bi-
nomially distributed P (yP = k/N |x) =

(
N
k

)
Pn(x, θ)k(1 −

Pn(x, θ))N−k (P (A) stands for probability of event A).
Therefore P (yP = k/N) = Ex[P (yP = k/N |x)] where
Ex[.] stands for the mathematical expectation over x,

(
N
k

)
is

the binomial coefficient, and where Pn(x, θ) = P (n+x ≥ θ)
is the probability that the noisy input is over the threshold.
Equipped with these results, it is easy to evaluate the Shannon
mutual information between the input and the output I(x, yP )
which can be given by the difference between the entropy
H(yP ) of the output and the conditional entropy H(yP |x).
But, no close form solution exists for the entropy nor the mu-
tual information, and theoretical optimization with respect to
the input probability structure (capacity of the network) or the
parameters of the neurons (infomax processor) is not possible
to perform. However, if the probability density functions px

of x and pn of n are even, a symmetry argument shows that
θ should be chosen equal to 0. This choice is adopted in the
following.

3. POOLING NETWORKS AND QUANTIZERS ARE
ASYMPTOTICALLY EQUIVALENT

To compare pooling networks and quantizers, we adopt the
compander approach and only consider the first two stages U◦
G. We assume that the output of the uniform quantizer takes
its values among the N + 1 values qi = i/N, i = 0, . . . , N ,
qi being chosen if the input lies in (ti = i/(N + 1), ti+1 =
(i+1)/(N+1). Note that this quantizer is not strictly uniform
because the quantization step 1/N is different from the time
step 1/(N + 1). However, it is asymptotically uniform, and
the compander decomposition is still valid, even at finite N .

3.1. Probabilistic aspects

Let yQ denotes the output of the uniform quantizer, or yQ =
U ◦ G(x). The probability law of the random variable is then

P

(
yQ =

k

N

)
=P

[
G(x) ∈

( k

N + 1
,

k + 1

N + 1

]]

=Fx◦G
−1

( k + 1

N + 1

)
−Fx◦G

−1
( k

N + 1

)
(1)

where Fx(u) is the cumulative density function (c.d.f.) of x.
Let yP the output of the pooling network. We have seen

that the probability law of yP is

P

(
yP =

k

N

)
= Ex

[
(
(
N
k

)
Fn(x)k(1 − Fn(x))N−k

]
(2)

where Fn(u) is the c.d.f. of n, and where the evenness of the
densities is assumed.

Let us now focus on the asymptotic regime for which N ,
the number of levels and the number of neurons, goes to infin-
ity. For the quantizer, this amounts to consider the high-rate
regime, and for the network, this will give the behavior of
large networks as encountered e.g. in the brain.

The probability law of the output of the network is given
by eq. (2), or

P

(
yP =

k

N

)
=

∫
R

(
N
k

)
Fn(u)k(1 − Fn(u))N−kpx(u)du
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If we perform the change of variable v = Fn(u), we get

P

(
yP =

k

N

)
=

∫ 1

0

(
N
k

)
uk(1 − u)N−kg(u)du

where g(u) =
px ◦ F−1

n (u)

pn ◦ F−1
n (u)

Let B(x, y) =
∫ 1

0
ux−1(1 − u)y−1du = Γ(x)Γ(y)/Γ(x +

y) be the Beta function [13] (Γ(x) is the Gamma function).
Since for an integer n! = Γ(n + 1), we get

P

(
yP =

k

N

)
=

1

N + 1

∫ 1

0

uk(1 − u)N−k

B(k + 1, N − k + 1)
g(u)du

Function δN,k(u) = uk(1−u)N−k

B(k+1,N−k+1) is a probability density
function defined over [0, 1], and can be shown to behave as
a delta function at the point k/N as N grows. Indeed, it is
monomodal and maximal at k/N ; its value at the maximum
goes to infinity with N , and as a probability density function,
it sums to one. Therefore, we have the following result

P

(
yP =

k

N

)
∼N

1

N + 1
g
( k

N

)
(3)

where an ∼n bn ⇔ limn→+∞ an/bn = 1. Note that a more
rigorous derivation of this result can be obtained using the
Laplace method to approximate integrals.

The probability law of the output is given by eq. (1).
Using the mean value theorem, there exists ck

N ∈ (k/(N +
1), (k + 1)/(N + 1) such that

P

(
yQ =

k

N

)
=

1

N + 1
(Fx ◦ G−1)′(ck

N )

But (Fx ◦G−1)′ = (px ◦G−1)/(G′ ◦G−1), and therefore, if
we choose G = Fn we obtain

P

(
yQ =

k

N

)
=

1

N + 1
g(ck

N )

It is easy to see that ck
N ∼N k/N (both belong to interval

(k/(N + 1), (k + 1)/(N + 1)) the length of which goes to
zero when N goes to infinity) and therefore we conclude that
P

(
yQ = k

N

)
∼N P

(
yP = k

N

)
if of course G = Fn.

3.2. Information theoretic aspects

We now focus on the transmission of information through the
devices.

It has been shown [8] and it is easy to verify that P (yP =
k/N) = 1/(N + 1) whenever Fn(u) = Fx(u). In this
case, the network equalizes the input, and the output is of
maximum entropy H(yP ) = log(N + 1). Therefore, if the
threshold distribution equals the distribution of the input and
if the compressor is the c.d.f. of the input, the quantizer and

the pooling network are equal in law. Furthermore, as we
saw previously, this situation corresponds for the quantizer
to the infomax situation, whatever N : This is not true for
the network since H(yP |x) �= 0. This is illustrated in fig-
ure (2.B) where we plot the mutual information in the case
of zero mean Gaussian laws for x and n, as a function of
parameter s = σn/σx, where σ2

z is the variance of variable
z. As clearly seen in the figure, the maximum of the mutual
information for the network does not occur at s = 1, and
hence not for Fn(u) = Fx(u). However, it seems that as N
grows, Arg maxs I(x, yP ) grows. The question is then, does
Arg maxs I(x, yP ) = 1 when N → +∞?

The mutual information between the input and the output
of the quantizer reads I(x, yQ) = H(yQ) since the device is
deterministic. Therefore, the infomax quantizer is the quan-
tizer which maximizes the entropy of its output. We have seen
that P (yQ = k/N) = g(ck

N )/(N + 1) and therefore the en-
tropy is maximal if and only if g(ck

N) = 1, ∀k = 0, . . . , N .
Remember that g = px ◦ F−1

n /pn ◦ F−1
n is the compressor is

chosen equal to Fn. Therefore, for finite N a sufficient con-
dition to ensure yQ to be of maximal entropy is px = pn or
G = Fx. This condition is necessary if N goes to infinity.

The entropy of the output and the mutual information in
the case of the network are more tedious to evaluate. Since
the p.d.f. involved are assumed even, it easy to show

I(x, yP ) = 2N

∫ 1

0

ug(u) log(u)du + H(yP )

+

N∑
k=0

P
(
yP =

k

N

)
log

(
N
k

)
,

a formula which can be hardly pushed any further exactly.
However, using the equivalence (3) for the probability law at
the output of the network, we are able to evaluate an approx-
imation for the discrete sums in the previous equation. The
calculation relies on the Riemann approximation of integrals.
We obtain for the entropy the following asymptotic approxi-
mation

H(yP ) = log(N + 1) − DKL(px||pn) (4)

where DKL(px||pn) = Ex[log px/pn] stands for the Kull-
back divergence between densities px and pn. This last result
shows how far the output of the network is from its maximum
entropy position. It also shows that the output has maximum
entropy if and only if the density of the noise is equal to the
density of the input, a result previously recalled in the paper.
The entropy is depicted in fig. (2.A) for several values of N
in the Gaussian case. The approximation is very good for
s ≥ 1 but becomes poorer and poorer as s goes to zero. This
is due to the fact that for s < 1, function g diverges at 0 and
1: for s < 1 the error in the approximation crucially depends
on s, and N must be very large in order to compensate the
divergence of g in the numerical calculation.
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For the mutual information, we obtain the approximation

I(x, yP ) = log
(N + 1)!NN

eN (N !)2
− DKL(px||pn). (5)

This shows also that the mutual information will be maxi-
mized for px = pn but only asymptotically, and therefore
for parameter s equals to 1 in the Gaussian case. Further-
more, the control of the error is even more difficult in the case
of the mutual information since it appears to be the difference
of many approximated terms. For the Gaussian case, the ap-
proximation validity crucially depends on s, and the lower s
the larger N for the approximation to hold. We have to work
further on the control of the error of the approximation using
both variable N and s. Finally, if the approximation allows
to say that the network is infomax at s = 1 when N → +∞,
it however too crude to allow the computation of the curve
sN = f(N) of the maximizing parameter s. We need to de-
velop a more precise approximation.
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Fig. 2. Plotted against the leading parameter s = σn/σx for dif-
ferent values of the size N of the network (up to bottom: N=10, 32,
100, 316, 1000). (A) Entropy of the output of the pooling network.
We have superposed the plot (circles) of the approximation (4) for
N=100, 316, 1000. (B) Mutual information of the pooling network.

4. CONCLUDING REMARKS

We have shown here the full asymptotic equivalence between
pooling networks of noisy neurons with quantizers. Precisely,
when the compressor function of the quantizer is chosen to
be the c.d.f. of the density of the noise in the network, the
output of the quantizer and of the network are equal in law
asymptotically. This allows to see the network as a random

sampler of the quantizer, and it also open perspectives for the
study of particular properties of the network

We have developed asymptotic approximation for the en-
tropy and the mutual information which allows to formulate
some already know conclusion. In order to be more useful,
these crude approximations needs to be tightened.

Our approach will be generalized to the case of different
thresholds. This case is particularly interesting since the op-
timization of the thresholds creates a structure of bifurcation
among the thresholds as a function of parameter s [14]. This
particular structure is not fully understood and our point of
view may lead to improvement in these questions.
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