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ABSTRACT 

In this work we compare tow methods for the identification 

of non-linear systems. The first one uses a quadratic non 

linear model of which parameters are estimated using a new 

algorithm based on the fourth order cumulants. The second 

one is based on the Takagi-Sugeno fuzzy models. The 

simulation results show that the fuzzy models give the good 

results in noiseless and weak noise environment. However 

the quadratic model of which parameters are identified 

using the proposed algorithm works well in the high noise 

environment case. 

1. INTRODUCTION 

Applications of Volterra non linear system theory [1] have 

played an ever increasing role in the non linear system 

identification domain [2-5]. It is partially traced to the fact 

that the Volterra series has two important properties [3]. The 

first one is that the output of the Volterra system is linearly 

dependent on the system kernel parameters. The second one 

relies on the fact that the signals non linearity can be 

represented through multidimensional operators working on 

the products of the input samples. As a result any gently non 

linear system can be described with reasonable accuracy by 

a truncated version of the Volterra series, which 

considerably reduces the complexity of the problem and 

thus requires a limited amount of statistical knowledge of 

the input and output. In practice, many important non linear 

effects in engineering and science can be approximated by a 

Volterra series of second or third order, i.e., quadratic non 

linear systems or cubic non linear systems [5]. 

Other non linear systems are available in literature, among 

them, the fuzzy models identification is an effective tool for 

the approximation of non-linear systems on the basis of 

measured data [6]. Among the different fuzzy modelling 

techniques, the Takagi-Sugeno (TS) model [7] has attracted 

most attention. The advantages of the TS fuzzy systems with 

regard to other systems reside in the fact that it does not 

demands a previous knowledge of the system that we wish 

to identified and it is characterised by their robustness and 

tolerance to noise. This model consists of if -then rules with 

fuzzy antecedents and mathematical functions in the 

consequent part. The fuzzy sets partition the input space into 

a number of fuzzy regions, while the consequent functions 

describe the system's behaviour in these regions. 

The construction of a TS model is usually done in two steps. 

In the first step, the fuzzy sets (membership functions) in the 

rule antecedents are determined. This can be done manually, 

using knowledge of the process, or by some data-driven 

techniques. In the second step, the parameters of the 

consequent functions are estimated. As these functions are 

usually chosen to be linear in their parameters, standard 

linear least-squares methods can be applied. The most 

important step in the construction procedure is the 

identification of the antecedent membership functions, 

which is a non-linear optimisation problem. Typically, the 

Levenberg-Marquardt optimisation technique is used.  

In this paper, we proposed an algorithm based on Higher 

Order Cumulants technique for identification of quadratic 

non linear systems. The obtained results are compared with 

those gave by the TS fuzzy models in term of the Mean 

Square Error (MSE). 

2. MODEL AND ASSUMPTION 

The output, corrupted by an additive Gaussian noise, of non 

linear quadratic system excited by an unobservable input is 

described by:  

IDENTIFICATION OF QUADRATIC NON LINEAR SYSTEMS 
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Where )(nu  is the input sequence, ),( jih  the impulse 

response coefficients, )(nw  is the noise sequence, q is 

the order of non linear quadratic system and )(ny  is the 

non measurable sequences. 

The observed output )(nS  is given by: 
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To simplify the construction of the algorithm we 

assume that the input sequence, )(nu , is independent and 

identically distributed (i.i.d) zero mean, 12

u , and non 

Gaussian. The system is causal, i.e.  

,),(0),(0),( qjiandjiforjih  where 1)0,0(h

The measurement noise sequence )(nw  is assumed 

to be zero mean, i.i.d, Gaussian and independent of )(nu

with unknown variance. 

3. IDENTIFICATION METHODS  

3.1. Blind identification of non linear systems 

3.1.1. Basic relationships

The second order cumulants (AutoCorrelation Function 

ACF) of the process )(ny  is described by the following 

expression: 

           )()()(2 nynyCumC y                (3) 

Where )(yCum  represent the cumulant of 

processes )(ny ,  represent time lag of random sequence. 

Basing assumption of )(nu  sequence, Brillinger and 

Rosenblatt have establishes the kth order cumulants of the 

excitation signal is given by formula [8]:   
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Using Eqs. (3) and (4) the ACF can be written as follows: 
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Fourth order cumulants are defined by: 

)()()()(),,( 3213214 nynynynyCumC y
(6)

Using Eqs. (4) and (6) the fourth order cumulatns can be 

written as follows: 
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The Fourier transform of the Eqs. (5) and (7) are given 

respectively by the following relationships: 

),(),()()( 422 HHCTFS uyy   (8) 

And:  
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If we suppose that 321 , the Eq. (8) 

becomes: 

),()( 32132143212 HS uy

                         ),( 321321H  (10) 

then, from the Eqs. (9) and (10) we obtain the following 

equations  
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The inverse Fourier transformation of the Eq. (11) given by 

following equation 
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3.1.2. Proposed algorithm using fourth order cumulants

if we take  tt 31 into Eq. (12) we obtain: 
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if we use the property of the ACF of the stationary process, 

such as 0)(2 tC y  only for qtq  and vanish 

elsewhere. 

We suppose that qt 21 the Eq. (13) becomes: 

),()2,,2( 2

0

4 iihiqitiqC
q

i

y

                 )(),(),( 222

2

)4,8( qCqtqthqqh y        (14) 

III ­ 713



According to the assumption ( 0),( iih  for 0i  and 

qi ), the choice of 2t  impose that ( qt 2 ). So, this 

implies that  qtq 22

If we take qtt 21  into the equation (13) we 

obtain: 
q
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According to the ACF property the relation (15) is valid 

if i=0 from where: 
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 using the property of the cumulants we write: 

),,(),,( 1312143214 tttttCtttC yy , and from 

Eqs. (14) and (16) we obtain:     
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to simplify the Eq. (17) we considering equation (7) we 

obtain with q21 :
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The Eqs (18) and (19) give   
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We take: 
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Eq.(17) we obtain the proposed algorithm based on fourth 

order cumulants: 
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The system equation (21) can be written as follows: 

                                     bA                                       (22) 

with A the matrix of size ),1( qq  element,  denote the 

vector that carries all filter coefficients of the model, is the 

size )1,(q  and b  is a vector column of size 

)1,1(q element.  

So, the solution will be written under the following form:   

                           bAAA TT 1)(ˆ
                              (23) 

With 
T(.)  represents the transpose of (.) .

3.2. Fuzzy systems 

The TS fuzzy system is given in the following form of If – 

Then rules: 

kR  : if tx   is kA  then kty ,
ˆ = t

d

k xP )(
, k = 1,2,…,c    (24) 

Where tx  is the input variable ( tx n
), kA  is a fuzzy 

set of kR and t
d

k xP
)(

 is a polynomial of order d in the 

components itx ,  of tx  . In the sequel, we will suppose d=1. 

For convenience, we will write the conclusion of 

rule kR relatively to input tx  as: 

kty ,
ˆ  = 'tx k                                  (25) 

Where k = ( 1 ,…, n )’. An intercept is allowed in 

the conclusion kty ,
ˆ  if we suppose 1,tx  =1 (bias term). 

Output tŷ  relative to input tx  obtained after aggregating a 

set of c TS rules can be written as a weighted sum of the 

individual conclusions: 
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Where
kA is the membership function related to the fuzzy 

set kA .

The membership functions are selected gaussian types: 
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The membership parameters kS and km  are estimated 

using the LM method.  

The identification process of TS model from sets of 

numerical data, generally, is subdivided in two categories: 

the structure identification and the parametric identification. 

In the first one, the number of the fuzzy rules c and the 

antecedent fuzzy sets ( kA , k = 1,…,c) are identified. In the 
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second one, the model parameters (linear and non linear) are 

estimated. The goal of the parameters optimisation is to find 

the “best” approximation tŷ to the measured output ty . The 

linear parameters k  are identified using the Weighted 

Least Squares (WLS) algorithm, while the Levenberg-

Marquardt (LM) algorithm are using to estimate the non-

linear parameters ( kS  and km )

4. SIMULATION RESULTS AND COMPARISON 

The non linear model considered here is a quadratic system 

of second order: 

)()2(95.0)1(35.0)()( 222 nwnunununy

Using Eq. (23) for the estimation of the 

parameters ),(ˆ iih , and from these parameters we computed 

the output system )(ˆ ny .

The identified TS fuzzy model has three inputs and one 

output. Each input has two membership functions and the 

output has a linear membership function. 

The comparison criterion is the MSE defined as:  

           
N

n

nyny
N

MSE
1

2)](ˆ)([
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With )(ˆ ny  is the output of the non linear models 

considered here and )(ny  is the output of the non linear 

system to be identified. 

To measure the strength of noise, we define the signal-to-

noise ratio (SNR) as: 
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The Table 1 shows the results of comparison between the 

quadratic non linear model of which the parameters are 

estimated using the proposed algorithm and the identified 

TS fuzzy model over 30 Monte Carlo runs.  

From these results we note that, in noiseless case the TS 

fuzzy model is more accurate than the quadratic model 

(proposed algorithm). 

In noise case, two remarks can be established: The first one 

is that when the SNR=0 or SNR=15dB, the quadratic model 

(proposed algorithm) is most advantageous. The second one 

when the SNR=30dB we note that TS fuzzy systems gives 

better precision. 

SNR Models MSE ± SD 

quadratic model 

(proposed algorithm) 
0.0108 ± 0.0100 

0

TS fuzzy model 1.5209 ± 0.1194 

15 
quadratic model 

(proposed algorithm) 
0.0100 ± 0.0031 

 TS fuzzy model 0.0492 ± 0.0022 

quadratic model 

(proposed algorithm) 
0.0070 ± 0.0056 

30

TS fuzzy model 0.0015 ± 8.12 10-12

quadratic model 

(proposed algorithm) 
0.0066 ± 0.0057 Nois 

eless 
TS fuzzy model 2.71 10-14±1.07 10-14

Table.1. Values of MSE in noiseless and noise environment 

over 30 Monte Carlo runs and for N=1000. 

5. CONCLUSION 

In this work, we have presented an algorithm based on 

fourth order cumulants for the identification of non linear 

quadratic system.  A comparison in term of MSE criterion is 

performed with the TS fuzzy systems in noiseless and noise 

environment cases. The obtained results show that the 

quadratic model of which the parameters are identified 

using the proposed algorithm is able to estimate the non 

linear system in high noise environment. While the TS 

fuzzy model gives the better results in noiseless and weak 

noise variance cases. 
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