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ABSTRACT

A number of signal estimation problems are arising where a
relatively low dimensional state is to be estimated from a high
dimensional observation sequence. In previous work we have
shown this leads to considerable simplification in the struc-
ture of optimal state estimators even in non-linear problems.
In these and other state estimation problems there is a grow-
ing interest in the computation of mutual information between
unobserved state and observed sequence. Here we show that
the mutual information computation can be likewise consid-
erably simplified.

1. INTRODUCTION

Where once, but a few disciplines such as astronomy, medical
imaging and geophysics were plagued by large data problems,
today the problem is ubiquitos. In computer vision, image se-
quence data generates large dimensional observations of low
dimensional phenomena (such as rigid body rotation)[1],[2].
In neuroscience direct multielectrode recordings of spiking
neurons from tens and even hundreds of brain cells can now
be made all relating to a single phenomenon, (such as the po-
sition and velocity of an arm) of low state dimension [3]. And
even in econometrics there are now available scores of daily
stock price series going back to 1960, all relating to a ’market
index’ [4].

In previous work [5] we have shown that under reason-
able conditions the considerable information available in the
high-dimensional observation sequence allows optimal filters
to be approximated with much simpler static estimators with
almost no loss of statistical efficiency.

Given the growing interest in computation of mutual in-
formation in a number of areas, including those mentioned
above, we investigate these computational simplifications for
mutual information estimation in nonlinear state estimation
problems. In contrast to much recent work on the problem of
estimating mutual information our results are developed for
correlated random processes not just independent sequences.

In sections 2 we review our earlier work on the problem;
for lack of space treating only nonlinear state models. In sec-
tion 3 we discuss computation of mutual information for a
nonlinear state estimation problem. Conclusions are offered
in section 4.

2. NON-LINEAR FILTERS WITH HIGH
DIMENSIONAL POINT PROCESS OBSERVATIONS

In our previous work [5] we derived results for linear state
space models estimated with the Kalman filter and then ex-
tended the results to the nonlinear case using Laplace asymp-
totics. Lack of space precludes a full development here so
we proceed directly to the more interesting nonlinear case. It
proves most efficient to repeat some of the Laplace asymp-
totics from [5]. This not only provides clarity, and allows for
further comments but also facilitates a very quick develop-
ment of the new mutual information results in the next sec-
tion. For lack of space and because it is the motivating appli-
cation for this work, only the case of point process observa-
tions is treated. Results for analog observations are attainable
with a similar development.

We treat a continuous time non-linear state space model
but for simplicity suppose time is discretised into tiny inter-
vals of extent δ so that in each tiny interval > 1 events occur
with probability o(δ). In neural coding practice we can think
of δ as being of order 1ms. This is not to be confused then,
with more usual binning of order 30ms-100ms [3] which will
lead to degradation of the estimators.

The associated discretised non-linear state space model is
(with xk = x(kδ)): State Equation

xk+1 = [xk +δfc(kδ, xk)]+nk

√
δ = fk(xk)+nk

√
δ (2.1)

where nk is a Gaussian white noise (independent of past ob-
servations and past states) with conditional variance Qk(xk) =
Q(k, xk). The observations are a vector of conditional (pos-
sibly inhomogeneous) Poisson process observations from p
cells and we consider discrete time (binned) observations,
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N
(δ,r)
k = # events in kδ, (kδ + δ), r = 1, · · · , p which we

can write as: Observation Equation

N
(δ,r)
k = λr(kδ, xk)δ + mr

k = λ
(r)
k (xk)δ + mr

k, r = 1, · · · , p
c.f.[6]. We can think of mr

k as a white noise of conditional

variance λ
(r)
k (xk)δ. Also denote N δ

k = (N (δ,1)
k , · · · , N (δ,p)

k )
as well as

N
(r)
1,k = (N (δ,r)

1 , · · · , N (δ,r)
k ) ⇒ N1,k = (N (1)

1,k , · · · , N (p)
1,k )

We wish initially to approximate the filtered and predicted
state estmators x̂k|k, x̂k|k−1 and their corresponding error co-
variances Pk|k, Pk|k−1. We deal with x̂k|k, Pk|k and quote re-
sults for the other two whose details will be given elsewhere.

We need to approximate the conditional density
p(xk+1|N1,k+1). We have

p(xk+1|N1,k+1) =
ρ(xk+1, N1,k+1)

P (N1,k+1)

where ρ(·) is a joint density and P (·) is a marginal density.
Using the observation equation we can write (with p(·|·) a
conditional density)

ρ(xk+1, N1,k+1) = p(N δ
k+1|xk+1)ρ(xk+1, N1,k)

Simple conditional Bernoulli calculations give then (where
P∗(·) is a reference density for a unit rate Poisson model)

ρ(xk+1, N1,k+1) = e−Uk+1(xk+1)ρ(xk+1, N1,k)
×P∗(N δ

k+1)

P∗(N δ
k+1) = Πp

1P∗(N
(δ,r)
k+1 )

P∗(N
(δ,r)
k+1 ) = Πk+1

1 [δNδ,r
i e−δ/N δ,r

i !]

Uk+1(x) = −Σp
1[N

(δ,r)
k+1 logλ

(r)
k+1(x) − (λr

k+1(x) − 1)δ]

The conditional mean estimator is then

x̂k+1|k+1 = E(xk+1|N1,k+1)

=
∫

xk+1e
−Uk+1(xk+1)ρ(xk+1, N1,k)dxk+1∫

e−Uk+1(xk+1)ρ(xk+1, N1,k)dxk+1

We approximate these integrals using Laplace asymptotics [7]
based on the fact that Uk+1(x) grows without bound as p →
∞ and the integral will be dominated by behavior near its
minimum. For this to work we make a ’high-dimensional’
assumption:
HD. Σp

1λ
r
k+1(x) → ∞, as, p → ∞.

Note then that, as p → ∞,
var(Σp

1(N
(δ,r)
k+1 − λr

k+1(x)δ) = Σp
1λ

r
k+1(x)δ → ∞

This means Uk+1(x) → ∞ in probability as p → ∞. So
we can apply Laplace asymptotics which leads us to introduce
the static estimator

x∗
k+1 = arg.min.Uk+1(x) (2.2)

which obeys: U
′
k+1

∣
∣
x=x∗

k+1
= 0, where

U
′
k+1 = −Σp

1(N
(δ,r)
k+1 − λr

k+1(x)δ)
dlnλr

k+1(x)
dx

We now approximate Uk+1(x) in the conditional mean inte-
grals by a second order Taylor series about x∗

k+1. The inte-
grals become Gaussian integrals and evaluating them yields

x̂k+1|k+1 ≈ x∗
k+1ψ(x∗

k+1)
ψ(x∗

k+1)
= x∗

k+1

ψ(x) = e−Uk+1(x)ρ(x, Y1,k)|U ′′
k+1(x)|− 1

2

We similarly find: Pk+1|k+1 ≈ (U
′′
k+1(x

∗
k+1))

−1.
Note that x∗

k is a maximum likelihood estimator based on an
inhomogeneous Poisson model. The bracketed term is then a
sample Fisher information.
And we then obtain the remarkable result (given first in [5]),
Result 1a. Under HD, the optimal mean square non-linear
filter is well approximated by the static non-linear regression
estimator (2.2).

In a similar way it can be shown ([5]),
Result 1b. Under HD, the optimal mean square one step
ahead predictor is well approximated by the static predictor
which achieves, asymptotically (as p → ∞) the same state
error variance that would be obtained were the state observed,

x̂k+1|k ≈ fk(x∗
k+1), Pk+1|k ≈ Qk(x∗

k+1)

To sum up again, with high dimensional non-redundant data
the mean square optimal nonlinear filter is no better than an
instantaneous population coding (static) maximum likelihood
estimator. Further, we now see that to predict future state
values using current data, we just advance the (static) maxi-
mum likelihood estimator according to the nonlinear dynam-
ics. And we then obtain the same performance we would
obtain had we observed the state (and used the prediction
fk(xk))! Finally we must point to the influence of δ. The
smaller is δ the smaller is Uk+1(x). So as δ increases the
Laplace asymptotics becomes more accurate.

Computation.
Here we offer comments additional to those in [5]. The max-
imum likelihood estimator must be found iteratively and a
Newton algorithm is a natural choice. A good start value is
available from the previous timestep. If we then try to shorten
things by identifying iteration with time we get an update

xk+1 = xk − (U
′′
k+1(xk))−1U

′
k+1(xk)

We can further replace U
′′
k+1(xk) by its sample scoring ap-

proximation (to ensure postive definiteness) Γk(xk)

Γk(x) = δΣp
1

∂λ
(r)
k+1(x)
∂x

∂λ
(r)
k+1(x)
∂xT

1

λ
(r)
k (x)
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we call the resulting algorithm the pseudo-scoring algorithm.
On the other hand we can consider a standard approximate
filter such as the extended Kalman filter (EKF) [8]. This is
given by a time-varying version of the Kalman filter equations
listed above with e.g. Fk = I + δ ∂fc(kδ,x̂k)

∂x̂k
. If we drop the

O(δ) term here we can show the EKF becomes
x̂k+1 = x̂k − PkU

′
k+1(x̂k)

Pk = (P−1
k|k−1 + Γ(x̂k))−1

Pk|k−1 = Pk−1 + Qkδ
Now following the argument above we could replace this with
a static estimator i.e. replace Pk by (Γk(x̂k))−1. We thus
recover the pseudo-scoring algorithm!

3. MUTUAL INFORMATION

Mutual information and entropy computation has become of
great interest in the neural information processing area [3]
although as [9],[10] discusses not always with a solid justi-
fication. Our concerns here are in direct estimation of mu-
tual information for its own sake and capacity plays no role.
We now consider calculation of the mutual information be-
tween the spike train and the state trajectory. The only pre-
vious attempt at such a computation is due to [11] who use
Gaussian approximations which lack a full justification. Also
[12] have discussed computation of bounds. Elsewhere in
the neural information processing literature the current ap-
proach to mutual information computation (for single spike
trains) is by brute force calculation based on the defintion
[3],[13],[14],[15],[16],[17]. This requires large amounts of
data including particularly many trials (or replicates).

However there is another approach, which is to implement
formulae for mutual information expressed in terms of under-
lying stochastic intensity functions. For a single spike train a
formula (for entropy) was first given by [18] and for the prob-
lem of interest here, such a formula has been developed by
[19],[20].

In recent work of the author [21] the results of [19],[20]
have been rederived in a much simpler way and also new for-
mulae developed in more complex situations. But the effect
of high-dimensional data is not addressed at all in [21].

However in order to help motivate the results we state a
new result (not derived in [21]).

Result 2: Mutual Information for Partially Observed Non-
linear State Space Systems.
Given an observation interval (0, T ) denote T = nδ, X1,n =
(x1, · · · , xn)T and use H(·|·) for conditional entropy, then

I(N1,n, X1,n) = Σn
1H(N δ

k |N1,k−1) − Σn
1H(N δ

k |xk) (3.1)

Proof: from the definition, I(N1,n, X1,n) = H(N1,n) −
H(N1,n|X1,n). Using the chain rule [22] gives

H(N1,n) = Σn
1H(N δ

k |N1,k−1)
which gives the first term of the result. And so we turn to the

second term. The conditional chain rule gives

H(N1,n|X1,n) = H(N δ
n, N1,n−1|X1,n)

= H(N1,n−1|X1,n) + H(N δ
n|N1,n−1, X1,n)

Now from the observation equation, the conditional distribu-
tion of N δ

k given past states and past observations depends
only on the most recent state and so further the conditional
distribution of N1,n−1 given X1,n−1 is fully determined. Thus
we find by direct calculation from the last expression

H(N1,n|X1,n) = H(N1,n−1|X1,n−1, xn) + H(N δ
n|xn)

= H(N1,n−1|X1,n−1) + H(N δ
n|xn)

and summing up gives the result. This result seems to be new
although a related result has been given by [23]. We did not
use any point process properties in the derivation so Result 2
applies to analog observations as well.

With some extra work (essentially described in [21]) we
obtain the discretised version of the result of Bremaud,

I(N1,n, X1,n) = (3.2)

δΣn
1Σp

1[E(λ(r)
k (xk)lnλ

(r)
k (xk)) − E(λ̂(r)

k lnλ̂
(r)
k )]

where λ̂
(r)
k = λ̂

(r)
(kδ) = E(λ(r)

k (xk)|N1,k−1) (3.3)

The two terms correspond to those in (3.1). Now we use
Laplace asymptotics to approximate the λ̂

(r)
k terms. Now us-

ing the Markov property of the state model
λ̂

(r)
k+1 =

∫
λ

(r)
k+1(xk+1)p(xk+1|N1,k)dxk+1

=
∫

λ
(r)
k+1(xk+1)(

∫
p(xk+1|xk)p(xk|N1,k)dxk)dxk+1

Now applying Laplace asymptotics to the inner integral as be-
fore yields

λ̂
(r)
k+1 ≈ ∫

λ
(r)
k+1(xk+1)p(xk+1|x∗

k)dxk+1

But now in view of (2.1) for small δ, p(xk+1|x∗
k+1) behaves

like a Dirac-delta concentrated on xk+1 = fk(x∗
k) and using

this yields λ̂
(r)
k+1 ≈ λ

(r)
k+1(fk(x∗

k)). Thus we obtain:
Result 3: Approximate Mutual Information. Under HD

I(N1,n, X1,n) ≈ δΣn
1Σp

1E(A(r)
k − B

(r)
k ) (3.4)

A
(r)
k = λ

(r)
k (xk)lnλ

(r)
k (xk) (3.5)

B
(r)
k = λ

(r)
k+1(fk−1(x∗

k−1))lnλ
(r)
k+1(fk−1(x∗

k−1))

This is much simpler to calculate than (3.2) which requires
(via (3.3)) generation of the full conditional density of the
state given the observations. Simple Monte-Carlo averaging
can be used to get the expectations in (3.4). But for the second
term, which is data dependent, this will still be demanding.

But a much simpler idea occurs, namely to estimate
In = I(N1,n, X1,n) by the sum În = δΣn

1Σp
1I(r)

k ,

I(r)
k = (E(A(r)

k )) − B
(r)
k ). To see why this might work sup-

pose λk(x), fk(x) are not time-varying i.e. are only functions
of x. Then under reasonable assumptions, E(A(r)

k ) − B
(r)
k
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will be stationary in k. Now În has mean In which is of or-

der δnp = Tp while var(În) = δ2ΣΣcov(I(r)
k , I(r

′
)

k′ )) will
be of order δ2pn = p

nT 2 provided the correlations are not too
high. So the estimator precision = mean

standard error will be of

order = Tp√
p√
n

T
=

√
np i.e. large. Finally E(A(r)

k ) can be easily

estimated by Monte-Carlo averaging since it does not depend
on the observed data. This would then allow estimation of
mutual information off a single realization.

4. SUMMARY

In this paper we have discussed state and information estima-
tion from high-dimensional data. We had previously shown
that high-dimensional observations yields significant simplifi-
cation with optimal state estimators collapsing to simple static
estimators. In a nonlinear model with point process observa-
tions we have here interpreted these static estimators as in-
stantaneous maximum likelihood population coding schemes
and have also further elaborated on their computation. Fur-
ther we have shown that an associated model based compu-
tation of mutual information between observed spike train
and unobserved state can be approximated in a very simple
way. These results throw interesting light then on the compu-
tational capabilities of large neuronal assemblies.
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