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ABSTRACT

We address the problem of computing the Riemannian centroid of
a constellation of points in a naturally reductive homogeneous man-
ifold. We note that many interesting manifolds used in engineer-
ing (such as the special orthogonal group, Grassman, sphere, posi-
tive definite matrices) possess this structure. We develop an intrin-
sic Newton scheme for the centroid computation. This is achieved
by exploiting a formula that we introduce for obtaining the Hessian
of the squared Riemannian distance on naturally reductive homoge-
neous spaces. Some results of finding the centroid of a constellation
of points in these spaces are presented, which evidence the quadratic
convergence of the Newton method derived herein. These computer
simulation results show that, as expected, the Newton method has a
faster convergence rate than the usual gradient-based approaches.

1. INTRODUCTION AND MOTIVATION

Due to its quadratic convergence rate near the solution, Newton’s
method has for a long time been the method of choice for opti-
mization problems, especially when high precision is required, in
all fields from engineering to numerical analysis where it is used
extensively to obtain many digits of precision. Intrinsic Newton al-
gorithms for optimization problems with orthogonality and unitary
constraints are discused in [1] and [2]. The focus of this paper is on
deriving an intrinsic Newton algorithm for computing the center of
mass in naturally reductive homogeneous spaces.

1.1 Applications of Center of Mass Computation Moakher in
his study of SO(3) [3] mentions the study of plate tectonics and
sequence-dependent continuum modeling of DNA where experimen-
tal observations are obtained with a significant amount of noise that
needs to be smoothed. Manton confirms this need in [4] and fur-
ther broadens the applications to fuzzy control, robotics and vision.
Pennec [5] states that positive definite symmetric matrices are com-
monly used as covariance matrices for statistical characterization of
deformations and encoding of principle diffusion directions in Dif-
fusion Tensor Imaging (DTI), expanding the range of applications to
medicine. Computation of centers of mass also find applications for
analyzing shapes in medical imaging, see [6]. Center of mass com-
putation is also a mandatory step when considering the extension of
the K-means algorithm to manifolds.

It is important to note that all of the manifolds mentioned, and
many other commonly used fall under the class of naturally reduc-
tive homogeneous spaces (see [7] for an introduction) considered in
this paper. The Grassman manifold (G), sphere (S), positive definite

matrices (S) and the special orthogonal group (SO) are only a subset
of spaces that share this property.

1.2 State of the art Several approaches to the optimization of this
cost function exist, most of them relying on gradient methods. For
example Moakher has a study [3] of the problem in SO(3) in which
he presents solutions to particular cases. Manton [4] presents a gra-
dient method applicable to compact Lie groups proven to be glob-
ally convergent as long as the points are close enough to each other.
Hüper and Manton [8] developed a Newton method for this cost
function on the orthogonal group. The algorithm presented by Pen-
nec in [5] for the space of positive definite matrices is also a gradient
descent method.

1.3 Problem Formulation Let M be a naturally reductive homoge-
neous space [7] and X = {p1, . . . , pL} ⊂ M a constellation of P
points. Let d : M×M → R be the function that returns the intrinsic
distance of any two points on the manifold and define a cost function
CX : M → R as

CX (q) =
1

2

LX
l=1

d(pl, q)
2 =

PX
l=1

kpl
(q) , (1)

where the functions kpl
: M → R consider the distance to each

point individually and are defined as kpl
(q) = 1/2 d(pl, q)

2. The
Fréchet mean set of the constellation is defined as the set of solutions
to the optimization problem mf (X ) = argminq∈M CX (q). Each
element of the set mf (X ) will be called a centroid of X . Note that
depending on the manifold M a generic constellation might have
more than one centroid (for example if the sphere is considered with
a constellation consisting of two antipodal points, all the equator
points are centroids). The set of points at which the function (1)
attains a local minimum is called the Karcher mean set and is de-
noted as mk(X ). The objective will be to find a centroid for the
given constellation (which in the applications of interest should be
unique), but the possibility of convergence to a local minimum is not
dealt with. If the points on the constellation are close enough to each
other, it is known that the global set mf (X ) has a single element and
so the centroid is unique as stated in [4] and [9].

1.4 Contribution The contribution of this paper is the construction
of a Newton algorithm to compute centroids of constellations in nat-
urally reductive homogeneous spaces, henceforth denoted by NRHS.
These manifolds are created as a quotient space of a Lie group G by
a closed Lie subgroup H ⊂ G with certain properties (see [7] for
an introduction on these manifolds). This paper focuses on the case
G = GL(n, R), the set of invertible matrices. We achieve the al-
gorithm construction by deriving a formula for the intrinsic Hessian
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of the cost function considered in (1), which holds for this category
of smooth manifolds. In fact, our result is valid for a wider range of
manifolds since they only need to be locally symmetric Riemannian
manifolds (see [7] [10] and [11] for an introduction). However, the
need for carrying out some intrinsic computations such as parallel
transport of vectors and Riemannian log maps, restricts the immedi-
ate feasibility of the approach mainly to NRHS.

1.5 Paper Organization Section 2 starts by reviewing Newton’s
method on Riemannian manifolds and then presents our theorem,
needed for actual computation of the Hessian matrix for our case.
Sections 3-5 illustrates the application of our Newton method for
particular scenarios: we consider examples in the unit sphere, SO(n)
and S(n). The performance of our algorithm is compared to the
usual gradient-based approaches and shown to outperform them. Fi-
nally conclusions are drawn in section 6.

2. HESSIAN OF THE RIEMANNIAN SQUARED DISTANCE
IN NATURALLY REDUCTIVE HOMOGENEOUS SPACES

2.1 Review of Newton’s Method in Riemannian Manifolds Let
qk ∈ M henceforth designate the kth iterate in an optimization
method. Newton’s method on a manifold is essentially the same as
in R

n (see [1], [2] and [12] for some generalizations). It generates a
search direction dk ∈ Tqk

M as the solution of the linear system

H · dk = − grad f(qk) , (2)

where H is the matrix representation of the Hessian of the cost
function and grad f(qk) ∈ Tqk

M is its gradient. Some care is
needed though, since the Hessian and the gradient are not as simple
to find as in R

n, but are in fact given as the solutions of (df)qXq =
〈grad f(q), Xq〉 and Hess f(q)(Xq, Yq) =

˙∇Xq grad f, Yq

¸
for

q ∈ M and Xq, Yq ∈ TqM are any tangent vectors, (df)q denotes
the differential of the function f at the point q and ∇ denotes the
Levi-Civita connection of the manifold.

Once a Newton direction has been obtained, it should be checked
if it’s a descent direction (its dot product with the gradient vector
should be negative). If so, the update equation qk+1 = expqk

(αkdk),
can be used to obtain a better estimate, where αk is a step size, given
for example by Armijo’s rule and the Riemannian exp map provides
a means of travel on the manifold (it shall be described in section
2.4). If the dot product is negative, a standard negative gradient di-
rection should be used.

Using linearity of the gradient and the Hessian, the cost function
in equation (1) allows for the decomposition

grad CX (q) =
LX

l=1

grad kpl
(q) = −

LX
l=1

logq(pn)

Hess CX (q) =
LX

l=1

Hess kpl
(q) , (3)

where the Riemannian log map was used (it will be described in
section 2.4). Although the gradient is readily computed (it is easy
to check the result using normal coordinates), determination of the
Hessian is more involved. The next section describes how to calcu-
late it.

2.2 Calculating the Hessian

Theorem 2.1 Consider a locally-symmetric n-dimensional Rieman-
nian manifold M with curvature endomorphism R. Let Bε(p) be a

geodesic ball centered at p ∈ M and dp : Bε(p) → R the function
returning the distance from p. Let γ : [0, r] → Bε(p) denote the unit
speed geodesic connecting p to q ∈ Bε(p), where r = d(p, q). De-
fine the function kp : Bε(p) → R, kp(q) = 1

2
dp(q)2 and consider

any Xq, Yq ∈ TqM . Then

Hess(kp)q(Xq, Yq) =
D
X‖

q , Y ‖
q

E
+

+ r
nX

i=1

cλi
(r)

D
X⊥

q , Ei
q

E D
Y ⊥

q , Ei
q

E
. (4)

where Ei
q is the parallel transport along γ of an orthonormal basis

Ei
p ∈ TpM which diagonalizes the linear operator R : TpM →

TpM , R(Xp) = R(Xp, γ̇(0))γ̇(0) with eigenvalues λi, this means
R(Ei

p) = λiE
i
p. Also,

cλ(t) =

8<
:

√−λ/ tanh(
√−λ t) λ < 0

1
t

λ = 0√
λ/ tan(

√
λ t) λ > 0

.

Here the ‖ and ⊥ signs denote parallel and perpendicular orthogo-
nal components of the vector with respect to the velocity vector of γ,

i.e. Xq = X
‖
q + X⊥

q ,
D
X⊥

q , X
‖
q

E
= 0, and

˙
X⊥

q , γ̇(d)
¸

= 0 .

Due to paper length constraints, the proof of this theorem is not
presented. It can be found in [13]. The proof is established by ex-
ploiting some results about Jacobi fields [9] together with the fact
that the curvature endomorphism R is parallel in these manifolds.

2.3 Algorithm skeleton
Input: Constellation X = {p1, ..., pL} ∈ M
Output: Karcher Mean q ∈ mk(X )
Initialization: choose q0 ∈ M and tolerance ε > 0. Set k = 0.

Loop: · Compute intrinsic gradient gk = grad f(q) ∈ Tqk
M .

· if |gk| < ε set q = qk and return.
· compute Newton direction dk.
· if 〈dk, gk〉 ≥ 0 set dk = −gk.
· apply Armijo rule to obtain αk ≈ argminα≥0 expqk

(αdk).
· set qk+1 = expqk

(αkdk). Please note that due to finite
precision limitations, after a few iterations the result
should be enforced to lie on the the manifold.

· set k ← k + 1 and re-run the loop.

2.4 Implementation Considerations To implement equation (4)
some intrinsic manifold computations need to be carried out. The
next sections, describing the application of the algorithm to a spe-
cific set of manifolds contain the actual functions. The exponential
map sends a vector Xp ∈ TpM to a point on the manifold. If γ
is the unique geodesic such that γ(0) = p and γ̇(0) = Xp, then
expp(Xp) = γ(1). In general expp is only defined on a neighbor-
hood of the origin in TpM , however a NRHS is complete, which
means expp has domain TpM . On a sufficiently small open neigh-
borhood, this map is a diffeomorphism. Its inverse function known
as the logarithm, when defined, returns Xp = logp(q) such that,
γ(0) = p, γ(1) = q and γ̇(0) = Xp. There is another important
function which parallel transports a given vector along a geodesic.
So parp(Xp, Yp) : TpM × TpM → TqM parallel translates the
vector Yp along the geodesic with the same characteristics as before.
We note that in NRHS manifolds these operations are easy to carry
out, e.g. see the closed form solutions in sections 3-5.
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Fig. 1. Illustration of the orthonormal base needed.

A few remarks on how to obtain the orthonormal base set {Ei
q}

are in order. First let {F i
p} ⊂ TpM be any orthonormal base and

construct the symmetric matrix A = [aij ] where aij =
˙
F i

p,R(F j
p )

¸
.

Let A = V DV T be its eigenvalue decomposition (EVD), where
D = diag(λ1, ..., λn) reveals the necessary λi and V = [vij ] are
used to construct Ei

p =
Pn

k=1 vkiF
k
p . Finally, each element of this

base is parallel translated to q resulting in the set {Ei
q} ⊂ TqM .

Please note that these λi are associated with the sectional curvature
of the manifold, so constant sectional curvature spaces allow for an
important simplification of equation (4):

Hess(kp)q(Xq, Yq) =
D
X‖

q , Y ‖
q

E
+ r cλ(r)

D
X⊥

q , Y ⊥
q

E
, (5)

where the constant λ is the sectional curvature. Note that the com-
putational weight of calculating an EVD for every point in the con-
stellation at every iteration of the Newton method is eliminated.

Whichever formula is used, (4) or (5) depending on the manifold
considered, equation (3) characterizes the Hessian of the cost func-
tion considered from the individual Hessians, one for each point in
the constellation.

Now that a means to obtain the value of the Hessian for any two
tangent vectors is known, it is necessary to find its matrix representa-
tion. For that, consider any orthonormal base {Ei

q} ⊂ TqM and ap-
ply equation (4) or (5) to each pair of vectors, i.e. H = [hij ] where
hij = Hess (CX )q(E

i
q, E

j
q). Note that this matrix representation is

valid only on this base, so it is necessary to write the gradient vector
in this base when solving equation (2), i.e. grad(f)p =

Pn
i=1 giE

i
q

where gi =
˙
grad(f)p, Ei

q

¸
. Once the linear system H · d = −g

is solved for d, the solution is once again expressed in this basis, so
the Newton direction is dN =

Pn
i=1 diE

i
q .

The following sections compare results obtained using our pro-
posed Newton method and the standard gradient method commonly
used (e.g. [5]) which iterates qk+1 = expqk

(− grad CX (qk)).
Note that since we do not have access to the optimum, the last

value given by the Newton algorithm is used as such. If the gradient
algorithm converges to the same point, this is assumed to be the best
estimate for the local minimizer.

3. S(N) - THE SPHERE

This n-dimensional manifold is described as the set S(n) = {x ∈
R

n+1 : ‖x‖ = 1} whose tangent space at a point p ∈ S(n) is
TpS(n) ∼= {x ∈ R

n+1 : pT x = 0}. Let p, q ∈ S(n), Xp, Yp, Zp ∈
TpS(n) and s is the norm of Xp. It can be shown that for the ambient
metric 〈Xp, Yp〉 = XT

p Yp:

• expp(Xp) = p cos(s) +
Xp

s
sin(s).

• logp(q) = (q − p(pT q)) a
sin(a)

where a = arccos(pT q).

• parp(Xp, Yp) =
−〈Xp/s, Yp〉 (sin(s)p + (1 − cos(s))Xp/s) + Yp.

• R(Xp, Yp) · Zp = 〈Yp, Zp〉Xp − 〈Xp, Zp〉Yp.

The constellation was populated with random points pl ∈ S(n) gen-
erated as pl = p̂l/‖p̂l‖ where p̂l ∈ R

n+1 is randomly generated.
In order to satisfy some distance constraints the last coordinate was
enforced to be positive, i.e. all points were generated on the positive
half sphere. Note that this is a constant sectional curvature space
so equation (5) may be used to calculate the Hessian. The results
obtained when considering S(4) with a constellation with 10 points
are presented in figure 2. The Newton quadratic convergence rate is
evident as is the linear rate associated with the gradient method.
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Fig. 2. Distance to optimum value in S(4) ⊂ R
5 with 10 random

generated points.

4. SO(N) - SPECIAL ORTHOGONAL GROUP

This n(n−1)/2 dimensional manifold represents the set of rotations
of R

n and is described as SO(n) = {x ∈ Mn(R) : xT x = id}
(Mn(R) is the set of n×n matrices with real entries) whose tangent
space at a point p ∈ SO(n) is TpSO(n) ∼= {pk : k ∈ K(n, R)},
where K(n, R) denotes the set of n × n skew-symmetric matrices.

The constellation points are generated using a QR decomposi-
tion of a random matrix, guaranteeing that the result restricts to
SO(n) by checking the sign of the determinant. No other con-
straints were enforced so the points should spread through the whole
manifold and not restrict to a particular neighborhood. Note that
although SO(3) has constant curvature, the same does not apply
for higher order manifolds so the general equation (4) has to be
used. The results shown in figure 3 were obtained using a constella-
tion of 10 points on SO(4). Note that this is a higher dimensional
manifold than the previous sphere example (6 degrees of freedom
compared to 4). Let p, q ∈ SO(n), Xp, Yp, Zp ∈ TpSO(n). We
have the following closed-form expressions for the ambient metric
〈Xp, Yp〉 = tr{XT

p Yp}:
• expp(Xp) = p exp(pT Xp), where exp denotes the matrix

exponential function.

• logp(q) = p log(pT q) where log denotes the matrix loga-
rithm.

• parp(Xp, Yp) = p exp(pT Xp/2)pT Yp exp(pT Xp/2).

• R(Xp, Yp) · Zp = − 1
4

ˆˆ
Xp, Yp

˜
, Zp

˜
where the brackets

denote the lie bracket at point p.

Again, it is clear that the Newton method is converging at a
quadratic rate, as opposed to the linear rate of the gradient method.
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Fig. 3. Distance to optimum value in SO(4) ⊂ M4(R) with 10
random generated points.

5. S(N) - SYMMETRIC POSITIVE DEFINITE MATRICES

This n(n+1)/2 dimensional manifold is described as the set S(n) =
{x ∈ Mn(R) : x = xT , with positive eigenvalues} whose tangent
space at a point p ∈ S(n) is TpS(n) ∼= {x : x ∈ S(n, R)},
where S(n, R) denotes the set of n × n symmetric matrices. Let
p, q ∈ S(n), Xp, Yp, Zp ∈ TpS(n). When considering the metric
〈Xp, Yp〉 = tr{XT

p p−1Ypp−1} we have, see [13]

• expp(Xp) = p1/2 exp(p−1/2Xpp−1/2)p1/2.

• logp(q) = p1/2 log(p−1/2qp−1/2)p1/2.

• parp(Xp, Yp) = p1/2Qp−1/2Ypp−1/2Qp1/2, where Q =

exp(p−1/2Xpp−1/2/2).

• R(Xp, Yp) · Zp = 1/4(Zpp−1O − Op−1Zp), where O =
Xpp−1Yp − Ypp−1Xp.

In this example 30 points on S(3) (a 6 dimensional manifold)
were generated to form a constellation to which the algorithm has
been applied. This manifold has the particularity of having non-
positive sectional curvature, guaranteeing the uniqueness of the cen-
troid. The points were generated around a nominal point by follow-
ing geodesics departing from this point with tangent vectors obeying
a Gaussian distribution. This constellation construction method and
the manifold considered resembles the one described in [5]. The re-
sults are shown in figure 4. Once again the quadratic convergence
rate of the Newton method outperforms the gradient method.

6. CONCLUSIONS

A way to compute the Hessian of the squared distance cost func-
tion on naturally reductive homogeneous spaces was presented and
some results of its application to calculate the Karcher mean of a
set of points on commonly used manifolds were shown. The results
clearly show that when used in a Newton optimization algorithm, if
it converges, it does so quadratically fast. Comparing with standard
gradient algorithms this results in a faster convergence rate, requiring
in some cases only a small fraction of the iterations for an adequate
solution. For constant sectional curvature spaces the computational
cost per Newton iteration affords a significant reduction. In [13] we
study some approximations to the Hessian with the intent of reliev-
ing the computational cost per Newton iteration.
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Fig. 4. Distance to optimum value in S(3) ⊂ M3(R) with 30 ran-
dom generated points.
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