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ABSTRACT

We discuss a technique whereby internal signals in a DSP can be

controlled externally without causing output disturbances. This is

used to extend the technique of companding (compressing and ex-

panding), widely used in transmission and sound recording, to dig-

ital signal processors. It is shown that this technique allows all sig-

nals involved, including those at the input of an analog-to-digital

converter and those internal to a fixed-point DSP, to be close to full

scale, thus spanning most of the available bits and making possible

a large signal-to-noise-plus-distortion ratio over a large input range.

1. INTRODUCTION

Companding (compressing/expanding) is widely used in transmis-

sion and sound recording [1, 2] to compress the dynamic range of

input signals, so that the latter remain well above the noise in the

channel or the storage medium even at low input levels; at the output,

the dynamic range is restored (expanded). Since the transmission or

storage medium does not (ideally) modify the signal, the output en-

velope (and the actual output) can generally be recovered from the

compressed signal, as a one-to-one relation exists between the enve-

lope of the latter and the original input envelope. One may consider

applying this technique to systems of the type shown in Fig. 1(a),

composed of analog-to-digital converters (ADCs), digital signal pro-

cessors (DSPs), and digital-to-analog converters (DACs); the input

to the ADC is, for simplicity, assumed to be an already sampled ana-

log value. In applications where large amounts of computation are

needed, such as multimedia, it is desirable to implement the ADC

and fixed-point arithmetic with as few bits as possible; companding

should help combat the effect of the resulting significant quantiza-

tion error. However, a straightforward application of companding to

such systems runs into problems. If a compressor is used in front of

the ADC, envelope information cannot be independently recovered

at the output, as the signal envelope is in general modified by the

DSP. It may appear at first sight that this problem can be solved by

dividing the input signal, u(n), by its envelope, eu(n), to produce

a signal û(n) with compressed envelope, and transmitting eu(n) di-

rectly to the output in order to restore the signal envelope, as shown

in Fig. 1(b); this, however, assumes that the output envelope in the

original system of Fig. 1(a) is the same as the input envelope, which

in general is not the case. For example, if the DSP were simply

a k-delay block, y(n) should equal u(n − k). However, the com-

pressed input û(n) = u(n)
eu(n)

, passing through the k-delay block,

gives ŷ(n) = u(n−k)
eu(n−k)

at the output of the DSP, which, when multi-

plied by the input envelope, gives ŷ(n) = [ eu(n)
eu(n−k)

]u(n− k) as the

final output, which is not equal to the desired u(n − k). DSPs with

more complicated dynamics will have more complicated distortion.
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Fig. 1. (a) A prototype ADC-DSP-DAC system. (b) An attempt to

introduce companding to the system in (a). (c) Properly companding

system.

Thus, if the input-output behavior of the modified system is to re-

main identical to that of the original system, changes must be made

to the state variables inside the processor, as is the case with analog

systems [3, 4]. This is indicated in Fig. 1(c).

In special cases where the DSP dynamics are extremely fast rel-

ative to variations in eu(n), the distortion introduced by the simple

input-output companding shown in Fig. 1(b) will be relatively low.

For example, in the case of the k-delay block, if eu(n) is approx-

imately equal to eu(n − k) for all n, then y(n) is approximately

equal to u(n − k), as desired. In general, however, the distortion

introduced by applying the technique of Fig. 1(b) is intolerable, in

which case companding of the form shown in Fig. 1(c) becomes

necessary. In this paper, we discuss our initial attempt to accomplish

such proper companding in DSPs, and present simulation results that

confirm the ideas presented.

2. EXTERNALLY LTI DSPS

By performing a linear time-varying transformation on the inter-

nal states of a general linear, time-invariant (LTI) system, one can

produce a system in which internal state variable control may be

achieved without disturbing the final output [4]. Here, we will ex-

tend this technique by also allowing independent control of the input

and output, and we will apply it to DSPs. Consider a LTI discrete-

time mth order system as shown in Fig. 2(a), with single input u(n),

state vector x(n) = (xi(n)), and single output y(n). The quantity

q(n) represents the quantization error of the ADC, and will be as-

sumed to be zero for now. The state equations of this system are of
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Fig. 2. (a) A discrete-time system. (b) The system in (a) with con-

trols for adjusting its internal signals.

the form:
x(n + 1) = Ax(n) + Bu(n)

y(n) = Cx(n) + du(n)
(1)

where A = (aij) is a m × m matrix, B = (bi) is a m × 1 column

vector, C = (cj) is a 1×m row vector, and d is a scalar. This system

will be referred to as the “prototype system”, and corresponds to the

system in Fig. 1(a), assuming that the ADC and DAC are of infinite

resolution.

We want to create the system of Fig. 2(b), which, if fed by

the same input u(n), produces the same zero-state output y(n), but

whose input û(n), output ŷ(n), and state variables x̂i(n) are mod-

ified with respect to the corresponding variables in the prototype as

follows:

û(n) = u(n)
eu(n)

ŷ(n) = y(n)
ey(n)

x̂i(n) = xi(n)
exi

(n)
, i = 1, ...., n

(2)

where eu(n), ey(n) and exi(n) are appropriate positive control sig-

nals. For example, these signals can be approximately equal to the

envelope of the corresponding signals in the prototype, but this is not

a necessary assumption for the derivation to follow. Using (2) in (1)

produces the state equations of a new system:

x̂(n + 1) = Â(n)x̂(n) + B̂(n)û(n)

ŷ(n) = Ĉ(n)x̂(n) + d̂(n)û(n)
(3)

where Â = (âij), B̂ = (b̂i), Ĉ = (ĉj), and d̂(n) have the same

dimensions as A, B, C and d, and their elements, after some algebra,

are found to be given by:

âij(n) = aij
exj

(n)

exi
(n+1)

b̂i(n) = bi
eu(n)

exi
(n+1)

ĉj(n) = cj
ej(n)

ey(n)

d̂(n) = d eu(n)
ey(n)

(4)

Thus, in the modified system in Fig. 2(b) and in equations (3)-(4),

the internal signals can be controlled by the e-controls. These inter-

nal signals can thereby be scaled to any desired value with respect to

the corresponding internal signals of the prototype, and this can be

done dynamically without causing disturbances at the output. Thus,

if the e-signals are assumed to be an independent control input, the

system is internally time-varying, but its external behavior is time-

invariant and identical to that of the prototype LTI system. If the

e-controls are derived from the input, as suggested in Fig. 1(c), the

system becomes internally nonlinear, while its external behavior is

still the same as that of the prototype. As shown in Fig. 1(c), in a

complete system including an ADC and a DAC, the input and out-

put scaling is in the analog domain, and corresponds to variable-gain

amplification.

The input-output behavior of the two systems in Fig. 2 will be

identical only if there is no quantization; in the presence of the latter,

the output quantization errors of the two systems (for a given input)

will be different. The above equations can be re-written including

the quantization error q(t). Due to lack of space, suffice it to observe

that, whereas in Fig. 2(a) the input to the DSP is u(n) + q(n),

in Fig. 2(b) that input becomes e−1
u (n)u(n) + q(n). When the

envelope of u(n) is small, the factor e−1
u (n) can be made large;

this strengthens the signal whereas the error remains the same, and

results in an improvement of the signal-to-quantization-error ratio by

a factor of e−1
u (n). Similar results can be obtained for the errors due

to limited-precision fixed-point arithmetic in the DSP.

3. COMPANDING DSPS

In the development that led from equations (1) and (2) to equa-

tions (3)-(4), no specific form was assumed for the e-controls; the

above derivation shows that, in principle, the systems in Fig. 2 would

be input-output identical if there were no quantization error, inde-

pendent of the exact nature of the e-controls. However, in the pres-

ence of ADC quantization effects and fixed-point arithmetic, these

controls should be chosen appropriately to help minimize the quan-

tization error at the output. All signals in the prototype will be as-

sumed normalized so that the maximum value of their envelope is

1. The internal signal envelopes in the companding system should

be kept close to this maximum value, so that most bits are exercised

for adequate signal-to-noise ratio. In simple cases with low-order

DSPs, all signals can have a similar envelope, in which case the e-

controls can all be appropriately scaled and delayed versions of the

input envelope (plus a small positive safety margin, to avoid divi-

sion by 0); this results in a very simple implementation. However,

the best possible choice for the e-controls is to make each equal to

the envelope of the corresponding signal in the prototype, so that

the companded signals û, ŷ and x̂i in (2) have approximately con-

stant envelopes; the approximation results from quantization errors

in the signals of the prototype and from imperfections in the enve-

lope extraction process. We will adopt this choice in order to test the

principles presented. Thus, in the rest of this paper, ev(n) will rep-

resent the envelope of a signal v(n). For now, the envelope can be

considered a slowly-varying signal that connects the peaks of |v(n)|,
plus a small positive safety margin as above. The e-controls can be

derived by using the prototype as a companion system, obtaining its

u, y, and xi signals, and computing their envelopes. The limited pre-

cision of the prototype is not a serious problem, as it is not important

to develop the envelope very accurately; all that is required is an ap-

proximation, to help make the envelopes of the companded signals

large and roughly constant. In some cases, it should be possible to

share the same hardware between the prototype and the companding
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system. It should be noted that only ratios of envelopes are involved

in controlling the companding system, as seen in (4). In most cases,

this results in great simplification. Specifically, it is almost always

only necessary to compute envelopes for a very small subset of the

xi signals from the prototype. Such simplifications will be seen in

the example presented in the next section.

4. CASE STUDY: A COMPANDING REVERBERATOR

4.1. Prototype

As an example, we consider the implementation of companding on

the reverberator shown in Fig. 3 [5]. Taking the states at the outputs

Fig. 3. A simple all-pass reverberator stage.

of each of the k delay elements, the state equations are:

x1(n + 1) = −0.8xk(n) + 0.2u(n)
xi(n + 1) = xi−1(n), 2≤i≤k

y(n) = 1.8xk(n) + 0.8u(n)
(5)

When these equations are put in the form of (1), we get: ai,i−1 =
1, 2≤i≤k; a1k = −0.8; b1 = 0.2; ck = 1.8; d = 0.8. All other

entries in A, B and C are zero.

4.2. Companding System

To develop the corresponding coefficients for the companding sys-

tem using (4), we first observe that, for the state variables in the

z−k block, we have xi(n + 1) = xi−1(n), 2≤i≤k, and xk(n) =
x1(n + 1 − k). Thus, corresponding relations also hold for the en-

velopes of these state variables, implying that

exi(n + 1) = exi−1(n), 2≤i≤k, and exk(n) = ex1(n + 1 − k).

Using these relations in (4), we observe that in all elements of the

form âi,i−1, the e-controls cancel out. Thus, applying (4), we obtain:

âi,i−1 = 1, 2≤i≤k; â1k = −0.8
exk

(n)

ex1 (n+1)
; b̂1 = 0.2 eu(n)

ex1 (n+1)
;

ĉk = 1.8
exk

(n)

ey(n)
; d̂ = 0.8 eu(n)

ey(n)
. All other entries in Â, B̂ and Ĉ are

zero. The state equations (3) for the companding processor become:

x̂1(n + 1) = [−.8
ex1 (n+1−k)

ex1 (n+1)
]x̂k(n) + [.2 eu(n)

ex1 (n+1)
]û(n)

x̂i(n + 1) = x̂i−1(n), 2≤i≤k

ŷ(n) = [1.8
ex1 (n+1−k)

ey(n)
]x̂k(n) + [.8 eu(n)

ey(n)
]û(n)

(6)

As seen above, k − 1 of the k e-controls corresponding to the

k states of the k-delay block cancelled out in the ratios in (4). This

will occur for every k-delay block in every system. This result makes

sense; if the input of a k-delay block is properly companded, then all

the internal states of this block will also be properly companded, so

no e-controls for the intermediate state variables are needed. This

greatly simplifies the implementation.

4.3. Quantitative Results

We have used Matlab/Simulink to implement, at a sampling rate of

44.1 kHz, a reverberator consisting of a cascade of two stages, each

of them being of the form shown in Fig. 3, with k = 2000 for

the first stage and k = 4410 for the second. We note that in the

first and third equations in (6), the right-hand sides consist of sums

of two terms, which add up to the companded variables on the left.

Although the variables on the left are properly companded and have

roughly constant envelopes, the envelopes of the individual terms in

the above sums cannot, in general, be expected to be constant. For

this reason, assuming that the companded variables are represented

by N bits, we used N bits for the factors in brackets, and 2N bits

for the products of these factors with the companded variables; after

2N bit summation, the results were converted to N bits.

The prototype system and the companding system were simu-

lated using a sinusoidal input. The simulations were run in fixed-

point with 8, 9, 10, and 11 bit systems, and used the same preci-

sion for the envelope computation. For the purposes of this experi-

ment, the envelope ev(n) of a signal v(n) was a small non-negative

amount (to avoid division by 0) plus a stair-case signal with a step

starting at each local peak of |v(n)|, except at points where this sig-

nal was lower than |v(n)|, in which case it was replaced by the latter.

This approach does not catch all nuances of the envelope variation of

v(n), so the resulting companding signals still have some envelope

variation; nevertheless, good results are obtained, as will be seen.

Since detecting a local peak at time-step n0 requires knowledge of

|v(n0+1)|, a single-sample delay was inserted in front of the divider

in Fig. 1(c) to make envelope computation a causal process.

Fig. 4. SNDR for 11-bit implementations of the processor of Fig.

1(a) and the companding processor of Fig. 1(c).

The steady-state output was observed for various input ampli-

tudes. Fig. 4 shows the signal-to-noise-plus-distortion ratio (SNDR)

for the case of 11 bits. As seen, whereas the SNDR for the non-

companding system varies in proportion to the input signal, the

SNDR of the companding system stays relatively constant over a
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large range of input values. The same qualitative behavior was also

verified for the cases of 8, 9, and 10 bits.

We used speech waveforms to assess the performance of the pro-

totype and of the companded system under realistic conditions. We

first simulated both processors for the case of no quantization, i.e. we

assumed that the ADC and DAC had infinite precision, and we used

double-precision floating-point arithmetic. The purpose of this sim-

ulation was to verify the theoretical results in Sec. 2, which assumed

no quantization in the processors. The state variable waveforms of

the two systems were very different; the ones in the prototype had

widely varying envelopes, whereas the ones in the companded sys-

tem had envelopes that were roughly constant, as expected. Yet the

output of the companding system in Fig. 1(c) was virtually iden-

tical to the output of the prototype in Fig. 1(a), with the two out-

puts differing by at most 10−15. These results verified the fact that,

although the companding system is internally nonlinear, it is input-

output equivalent to the prototype system.

Next, we ran the three systems of Fig. 1 in 8-bit fixed-point, with

the ADCs and DACs also being 8-bit. The results are shown in Fig.

5. The speech input in Fig. 5(a) was common to all three systems.

The state variable shown is the input to the k-delay block in the first

stage of the reverberator. The envelope of this state variable varies

considerably in the prototype system, as shown in Fig. 5(b), whereas

it is roughly constant at a large value in the companded system, as

shown in Fig. 5(c). (Note that the vertical scales of Fig. 5(b) and

Fig. 5(c) are different.) At the same time, the output of the latter,

in Fig. 5(f), is essentially identical to that of the prototype, in Fig.

5(d). In contrast, the output of the system of Fig. 1(b), shown in Fig.

5(e), is grossly distorted, illustrating the inadequacy of that approach

and the need to also compand the state variables, as proposed in this

paper.

Fig. 5. Waveforms of input, output, and internal state in the presence

of a speech signal, all versus time in seconds: (a) Input. (b) State in

prototype system of Fig. 1(a). (c) State in companded system of

Fig. 1(c). (d) Output of prototype system in Fig. 1(a). (e) Output of

system in Fig. 1(b). (f) Output of companded system in Fig. 1(c).

4.4. Qualitative Results

We also performed listening tests with speech and music inputs.

When run in full precision, the output of the system in Fig. 1(c)

sounded identical to that of the prototype in Fig. 1(a), as expected,

whereas the output of the system in Fig. 1(b) sounded grossly dis-

torted. With fixed-point arithmetic, a background “hiss,” caused by

quantization noise, was audible at the output of both the prototype of

Fig. 1(a) and the properly companded processor in Fig. 1(c). How-

ever, whereas the prototype system’s hiss was relatively constant, in

the companding system it became less audible during softer music

passages, and was inaudible when the signal was relatively quiet.

Representative audio files have been posted on a Web site [6].

5. CONCLUSIONS

This paper has developed a method that allows dynamic scaling of

the internal variables in a DSP, without producing transients at the

output. This method has been applied in the reduction of the effect

of quantization error in ADCs and fixed-point DSPs, by using com-

panding of the signals involved, so that most of the bits available are

exercised most of the time. Thus companding, a technique widely

used in transmission and recording, was shown to be transferable to

DSPs by properly taking the dynamical nature of the latter into ac-

count. The resulting companding processor is internally nonlinear;

despite this, assuming no quantization, its input-output behavior re-

mains identical to that of the original LTI system used as a prototype.

In the presence of quantization, it was shown that the companding

system has significantly smaller quantization error than the original

system.

Simulations were run for several cases and with sinusoidal,

speech, and music signals, and quantitative and listening tests were

performed. The results obtained have confirmed the theoretical prin-

ciples, and the quantitative performance obtained suggests that a

hardware implementation may well be worth undertaking. An eco-

nomical hardware implementation of the scheme proposed may find

use in such applications as multimedia, where large amounts of pro-

cessing are needed, and thus fixed-point arithmetic using a small

number of bits is highly desirable.

6. REFERENCES

[1] Member of the Technical Staff of Bell Telephone Laboratories,

Transmission Systems for Communications, Western Electric

Company, Winston-Salem, NC, 1970.

[2] R. M. Dolby, “Signal compressors and expanders,” US Patent

3,345,416, Oct. 1974.

[3] E. Blumenkrantz, “The analog floating point technique,” in

Proc. 1995 IEEE Symp. Low-Power Electronics, Oct. 1995, pp.

72–73.

[4] Y. Tsividis, “Externally linear time-invariant systems and their

application to companding signal processors,” IEEE Trans. Cir-
cuits and Systems II, vol. 44, pp. 65–85, Feb. 1997.

[5] S. Mitra, Digital Signal Processing: A Computer-Based Ap-
proach, p. 782, McGraw-Hill, New York, 2001.

[6] “http://www.cisl.columbia.edu/∼aek84/spconf2006.html,” .

III ­ 703


