
SYMBOLIC COMPUTATIONS IN VOLTERRA SYSTEM IDENTIFICATION

K. Kontosis, P. Angelikopoulos, P. Koukoulas, N. Kalouptsidis, I. Emiris

Department of Informatics and Telecommunications
University of Athens, Greece

Email: kalou@di.uoa.gr

ABSTRACT

This paper is concerned with symbolic computations in Volterra
system identification using higher order cumulants. An efficient
method that implements the Leonov-Shiryaev theorem is introduced.
The proposed method relies on the exploitation of recursive relations
between cumulants. The method is applied on the problem of blind
identification of Volterra-Hammerstein systems excited by stationary
higher order white noise. It solves previously intractable instances.

1. INTRODUCTION

Identification of nonlinear systems is of primary importance in sev-
eral application domains since many signals of interest are generated
by nonlinear sources or are processed by nonlinear systems. Volterra
systems constitute a popular class of models for modeling nonlinear
behavior ([1]).

Volterra-Hammerstein systems provide the simplest gate to the
world of nonlinear systems, yet they are general enough to be suc-
cessfully used in a number of signal processing applications. They
were proposed to capture the memory nonlinear effects in the power
amplifiers (PA) associated with wideband signals and they are used
as a model for the predistorter as well.

Cumulant based Volterra identification, conventional or blind,
heavily relies on Leonov Shiryaev (LS) theorem (see [2]). The LS
theorem expresses the cumulant of products of random variables in
terms of products of cumulants of random variables, summed over
the set of indecomposable partitions. Identification algorithms are
then devised by meticulously picking output samples so that the sub-
sequent application of the LS on the corresponding output cumulant
leads to closed form expressions for the Volterra kernels.

Calculations with indecomposable partitions become fairly com-
plicated even with low degrees of nonlinearities. Symbolic ap-
proaches can potentially provide important insight into the problem.
This is the main objective of the paper. A symbolic method for
the computation of the LS expression is derived and implemented
in C++. Our approach outperforms all past works dealing with the
application of LS Theorem ([3],[4]) as shown in Section 3.

2. LEONOV-SHIRYAEV THEOREM AND
INDECOMPOSABLE PARTITIONS

The LS theorem is stated in this section. For the proof see [5]. The
nature of indecomposable partitions is clarified. For a short tutorial
on cumulants and their use in signal processing see [6].

Theorem 2.1 [Leonov-Shiryaev] Consider random variables Xij

where i = 1, . . . , k, and j = 1, . . . , mi. Define Yi =
� mi

j=1 Xij ,

then,

cum(Y1, . . . , Yk) =
�

P

cum(Xij : (i, j) ∈ P1) · · · cum(Xij : (i, j) ∈ PM) (2.1)

The summation is over all indecomposable partitions P =
{P1, P2, · · · , PM} of the following two-dimensional array:

(1, 1) (1, 2) · · · (1, m1)
(2, 1) (2, 2) · · · (2, m2)

...
...

...
...

(k, 1) (k, 2) · · · (k, mk)

(2.2)

This array shall be denoted by LS.

Definition 2.1 A partition P , as above, is indecomposable, if there
exists no proper subset of sets of P such that their union coincides
with the union of some of the rows of the array LS.

An equivalent definition belongs to Brillinger [7]:

Definition 2.2 An indecomposable partition arises, if each set com-
municates with every other set of the partition of the two dimensional
array.

Two sets Pi1 , Pi2 of the partition hook, if there exists an index
(j1, j2) ∈ Pi1 and (j3, j4) ∈ Pi2 such as j1 = j3. Two sets Pij

, Pik

communicate if Pij
, Pi1 , . . . Pi,k hook consecutively together.

We now give matrix and graph characterizations of indecom-
posable partitions. Given a partition P of array (2.2) having M ele-
ments, we define an M × k matrix A as follows:

A(i, j) = Number of elements on the jth line of the array that
belong to the ith set of the partition. A graph G with k nodes is
defined from matrix A in the following way: We connect node i to
node t if elements (i, j), (t, j) of A are non-zero, for some j. A
n × n matrix is Reducible if there exists a permutation matrix P
of dimension n × n, such as P ′AP is a block triangular matrix,
where ′ denotes matrix transpose. Irreducible is any matrix that is
not reducible.

Theorem 2.2 The following statements are equivalent:

1. P is indecomposable.

2. A′A is irreducible.

3. G is connected

Proof 2.2 1 ↔ 3. Following definition 2.2 , if two sets hook, the
elements (i, j), (t, j) of A are non-zero. Thus we connect the corre-
sponding nodes in G. G is obviously connected if and only if all sets
communicate, which is the case of an indecomposable partition.

2 ↔ 3. Known result. See [8]

III ­ 6961­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

In the sequel we shall refer to k as the order of the cumulant
cum(Y1, . . . , Yk) and to N = � k

i=1 mi as the cardinality of the
cumulant. The LS expression (2.1) simplifies if the random variables
Xij are zero-mean Gaussian. In this case, only indecomposable par-
titions with elements of cardinality 2 survive and the corresponding
cumulant will be referred to as ZMG cumulant.

3. ALGORITHMIC APPROACHES AND NP
COMPLETENESS

3.1. Brute force schemes

In this section alternative algorithms for the implementation of (2.1)
are discussed. A straightforward implementation of (2.1) checks
whether each partition of (2.2) is indecomposable. A slight vari-
ant of this procedure is discussed in [4]. This algorithm requires
O(Bell(N) · 2N · p(N)) steps, where the Bell Numbers Bell(N)
provide the number of different partitions of (2.2) and are determined
via the expression:

e
ex

−1 =

∞�

N=0

Bell(N)

N !
x

N (3.1)

p(N) is a small implementation-specific polynomial of N hence can
be neglected. The term O(2N) rises from the testing of all all
2card(P) = O(2N) subsets of each partition P .

The above brute force algorithm can be improved if Theorem
2.2 is invoked. In this case set enumeration is replaced by a graph
connectivity test and complexity drops to O(Bell(N)p′(N)).

Numeric calculations indicate that the indecomposable partitions
are affluent in the set of all partitions and their number is approxi-
mated by Bell(N). To cope with this situation a new expression of
the LS relationship (2.1) is introduced that builds upon the recursive
structure of cumulants. A new algorithm based on this expression is
proposed.

3.2. Recursive relations between cumulants

Let S = { (i, j), i = 1, . . . , k, and j = 1, . . . , mi } be the set of
the elements of LS in (2.2).

To any P ⊆ S we associate:

• a vector B(P) where B
(P)
i = Number of elements from the

i-th row of LS array that belong to P , for i = 1, . . . , k

• The maximal sequence a1, a2, . . . , ap of distinct indices in
{1 . . . k} such that B

(P)
a1

= B
(P)
a2

= · · · = B
(P)
ap = 0

Theorem 3.1 Consider the random variables Xij where
i = 1, . . . , k and j = 1, . . . , mi. Define Yi =

� mi

j=1 Xij , i =
1, . . . , k. Let v be a random variable, then,

cum � v · Y1, Y2, . . . , Yk � = good(S) · cum � v, Xij ; (i, j) ∈ S � +
�

P⊂S,
good(P)=1

cum � v, Xij ; (i, j) ∈ P � · cum � �
(i,j)∈P̄ ,

Bi=0

Xij , Ya1
, . . . , Yap �

where: P̄ = S − P

good(P) =

�
1 if P̄ = ∅ or ∃ (i, j) ∈ P̄ such that B

(P)
i �= 0

0 otherwise

Theorem 3.1 expresses cumulants of products of variables in
terms of products of smaller cardinality cumulants. The proof is
omitted due to lack of space. Consecutive application of Theorem
3.1 reduces to cumulants of random variables as in (2.1). An exam-
ple of three applications of Theorem 3.1 follows:

cum(u2,u2) = cum(u, u, u, u) + cum(u) · cum(u2, u) +
2 · cum(u, u) · cum(u2) + 3 · cum(u, u, u) · cum(u)

cum(u2,u) = cum(u, u, u) + 2 · cum(u) · cum(u, u)

cum(u2) = cum(u, u) + cum(u) · cum(u)

If Theorem 3.1 is applied to ZMG cumulants, the constraint
card(P) = 1 could be added to the definition of good(P) = 1.

On the basis of the above theorem, the symbolic algorithm sum-
marized below is proposed for the recursive computation of cumu-
lants. The key point of the method is that it re-uses precalculated
cumulants, as same cumulants are usually requested more than once
by the recursive relation. Therefore, only c distinct cumulants are
calculated, ending up with an output-sensitive complexity O(c · 2N ·
size ·p′′(N)), where size is the number of terms in the final simpli-
fied solution. This is because Theorem 3.1 is applied to c cumulants
by computing a sum of 2N terms for each cumulant, and for each
such term line 14 consumes O(size) time because it manipulates
data of size terms. In the example above c = 3 and size = 4.
It is remarkable that for ZMG cumulants, the complexity drops to
O(c · size · p′′(N)). Cumulant equivalence is used in order to min-
imize c. This is achieved by storing precalculated cumulants in a
canonical form, which is independent of the variable names. The as-
ymptotic growth of c is a complicated issue, however it is illustrated
in Table 1.

Algorithm 1 CUM(X)

Input : cumulant array X as in Theorem 2.1
Output : vector representation of the terms in the righthand side
of (2.1)

1: if CUM(X) is precalculated then return the solution
2: else do the following:
3: choose any element v from X, and remove it from X
4: calculate the set S and the array LS from X
5: Solution ← 0
6: for each subset P ⊂ S do
7: calculate matrix B(P) from P
8: if P is good then
9: X ′ ← X

10: join all rows i, with B
(P)
i �= 0 together into one row in X ′

11: remove all elements X ′

ij with (i, j) ∈ P from X ′

12: remove empty rows from X ′

13: C ← CUM(X ′)
14: Solution ← Solution + cum (v, Xij : (i, j) ∈ P) · C
15: end if
16: end for
17: Solution ← Solution + good(S) · cum(v, Xij : (i, j) ∈ S)
18: return Solution and store it

3.3. Results

Table 1 shows the maximum cardinality cumulants that were calcu-
lated within a time limit of 100 seconds. ACUMUL, a C++ imple-
mentation of Algorithm 1 was used. V is the number of the distinct

III ­ 697

variables of the cumulant, and N is the cumulant cardinality. Since
the steps of the algorithm significantly depend on the form of array
X, many extreme cases were tested to ensure these results. Values c,
size are representative, taken from a single test.

Fig. 1 clearly shows the superior performance of the proposed
method. Single variable cumulants were calculated. Cumulants of
the form cum(u3, u3, . . . , un mod 3) were used, because being a
hard case for our method, they point out it’s effectiveness.

ZMG cumulants
V N
1 72
2 32
3 24
4 20
8 16
14 14

General cumulants
V N c size
1 18 247 355
2 15 1012 4839
3 14 2080 27150
4 12 946 23167
6 11 535 39595
10 10 31 102505

Table 1. Size of computed problems.

0 5 10 15 20 25 30
10

0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

Flops comparison between the 3 methods

Number of entries in the LS matrix

F
lo

ps

Brute Force Method
Graph Connectivity Test method
Proposed method

Fig. 1. Comparison of methods

4. BLIND IDENTIFICATION OF VOLTERRA
HAMMERSTEIN SYSTEMS

In this section we will use the proposed method to solve the problem
of blind identification of Volterra-Hammerstein (V-H) systems. As
an example of the whole procedure we shall present the closed form
expressions derived for a third order system.

V-H models are considered in [2] and have the following form

y(n) =

q�

k=0

h1(k)u(n − k) +

q�

k=0

h2(k)u2(n − k)

+ · · · +

q�

k=0

hp(k)up(n − k) + η(n). (4.1)

y(n) denotes the system output, u(n) denotes the system input and
η(n) denotes the disturbance. q specifies the system memory while
p provides the highest order of nonlinearity. u(n) and η(n) are mu-
tually independent. Throughout this section u(n) is stationary zero-
mean higher-order white noise meaning that its k-th order cumulant

is given by

c
k
u(τ1, τ2, · · · , τk−1) = γkδ(τ1, τ2, · · · , τk−1)

where δ(τ1, τ2, · · · , τk−1) is the (k − 1)-dimensional unit sample
signal, which is one for τ1 = τ2 = · · · = τk−1 = 0 and zero
elsewhere. Likewise η(n) is a stationary moving average process of
order at most q − 1. The determination of the Volterra kernels hi(k)
is our main objective.

Let us rewriting eq. (4.1) as a linear multivariable system of the
form

y(n) =

q�

i=0

b(i)w(n − i) + η(n) (4.2)

where
w(n) = � u(n) u2(n) · · · up(n) �

′

and
b(i) = � h1(i) h2(i) · · · hp(i) �

where ′ denotes matrix transpose. We shall impose the following
normalization constraint

b(0) = � 1 0 · · · 0 �

Following the analysis of [2] we arrive at the following equa-
tions:

c
∗

y = Γ
∗

wb
′(q) (4.3)

where

c
∗

y= � c2
y(q) c̄3

y(q, 0) · · · c̄p
y(q, 0) c̄p+1

y (q, 0) �
′

(4.4)

and

c
◦

y = Γ
◦

wb
′(τ) (4.5)

where

c
◦

y = � c̄3
y(q, τ) c̄4

y(q, τ) · · · c̄p+2
y (q, τ) �

′

(4.6)

Γ
∗

w = �������
(Γ̄2w)1×p

(Γ̄3w)1×p

...
(Γ̄pw)1×p

(Γ̄(p+1)w)1×p

� ������ (4.7)

and

Γ
◦

w = �������
b(q)(Γ̄3w)′p×p

b(q)(Γ̄4w)′p×p

...
b(q)(Γ̄(p+1)w)′p×p

b(q)(Γ̄(p+2)w)′p×p

� ������ (4.8)

The matrices Γ∗

w and Γ◦

w consist of cumulants of products of
the input variable u(n). The rows of Γ∗

w are the vectors (Γ̄kw)1×p

whose j-th element, 1 ≤ j ≤ p, is given by

cum � u(n), u(n), · · · , u(n), uj(n) � (4.9)

III ­ 698

The cumulant operator involves k variables where k − 1 of them are
equal to u(n) while one is equal to uj(n).
Likewise the (i, j) element of the matrix (Γ̄kw)p×p, with 1 ≤ i, j ≤
p, is given by

cum � u(n), u(n), · · · , u(n), uj(n), ui(n) � (4.10)

A symbolic algorithm for the solution of the blind identification
problem when the input intensities γj , 1 ≤ j ≤ 3p, are known
involves the following 4 steps:

1. Determine the entries of the matrix Γ∗

w of the linear system
solver (4.3) using the LS symbolic procedure described in
section (3.2)

2. Compute the boundary vector b(q) applying a symbolic lin-
ear solver (4.3). This step has been analyzed in detail in the
specific case of section 4.2.

3. Use a matrix by vector multiplication symbolic module to cal-
culate Γ◦

w via (4.8)

4. Determine the vector b(τ) by solving the linear system (4.5).

For steps 2 and 4 we rely on [9]. The parameters c∗

y and c◦

y are
directly obtained from output cumulants. The resulting parameters
b(q) and b(τ) are rational functions of γj , c∗

y and c◦

y.
It follows from the above description that the main barriers that

need to be removed are related to the application of the Leonov -
Shiryaev formula in the matrices Γ∗

w and Γ◦

w in eqs. (4.3) and (4.5).
This is achieved in section 3.2.

4.1. Computational requirements

Consider a V-H system of order p. According to the previous analy-
sis we need output cumulants of order up to p + 2 (or of order up to
2p [2] if we want to ensure solvability). Due to (4.10) this will yield
a cumulant cardinality N ≤ 3p. By using our tool, a V-H system of
order 7 needs cumulants of cardinality N = 21.

4.2. Application in a Volterra-Hammerstein system of order 3

We illustrate the above symbolic procedure in a V-H system of order
3 when the input is white Gaussian. In this case the rational func-
tions specifying the kernels are considerably simplified provided that
output cumulants are taken in the range p + 2, · · · , 2p rather than
3, · · · , p + 2. Let us first consider identifiability. This case is se-
cured if the determinant of Γ∗

w as well as the determinant Γ◦

w are
nonzero. In the general case the determinant of Γ∗

w turns out to be:

p

�
i=1

i!γ
p(p+1)/2
2 (4.11)

Consider the case p = 3. The determinant is 12γ6
2 . Clearly

this is always nonzero because γ2 �= 0. The matrix Γ◦

w is triangular.
Generally det (Γ◦

w) is an integer multiple of (c̄p+1
y (q, 0))pγ

p(p−1)/2
2 .

In the case p = 3 the determinant is 216γ3
2 (c̄4

y(q, 0))3. Moreover,
c̄4
y(q, 0) = 6h3(q)γ

3
2 . Therefore the determinant of Γ◦

w is nonzero
if hp(q) �= 0.

Application of step 2 provides the following rational functions
for the boundary kernels.

h3(q) =
c̄4
y(q, 0)

6γ3
2

h2(q) =
c̄3
y(q, 0)

2γ2
2

h1(q) =
c̄2
y(q)

γ2
−

c̄2
y(q)

2γ2
2

Finally application of step 4 yields the following expressions for
the remaining coefficients:

h3(τ) =
c̄6
y(q, τ)

36γ2
2 c̄4

y(q, 0)

h2(τ) =
c̄5
y(q, τ)

6γ2c̄4
y(q, 0)

−
c̄3
y(q, 0)c̄6

y(q, τ)

12γ2c̄4
y(q, 0)c̄4

y(q, 0)

h1(τ) =
c̄3
y(q, τ)

c̄3
y(q, 0)

−
2c̄3

y(q, 0)c̄5
y(q, τ)

3c̄4
y(q, 0)c̄4

y(q, 0)

+
c̄6
y(q, τ)c̄3

y(q, 0)c̄3
y(q, 0)

3c̄4
y(q, 0)c̄4

y(q, 0)c̄4
y(q, 0)

−
c̄6
y(q, τ)c̄2

y(q)

6c̄4
y(q, 0)c̄4

y(q, 0)

−
c̄6
y(q, τ)

4γ2c̄4
y(q, 0)

5. CONCLUSION

In this paper a symbolic procedure for the implementation of the
Leonov-Shiryeav theorem is derived and is applied to the problem
of blind identification of Volterra-Hammerstein systems. Work in
progress considers creating a database of all cumulants of arbitrarily
high order, and their application in solving the blind identification
problem of general Volterra systems.

6. REFERENCES

[1] V. J. Mathews and G. L. Sicuranza, Polynomial Signal Process-
ing, Wiley, New York, 2000.

[2] N. Kalouptsidis and P. Koukoulas, “Blind identification of
Volterra Hammerstein systems,” IEEE Trans. Signal Process-
ing, vol. 53, pp. 2777–2787, August 2005.

[3] B. Smith and C. Field, “Symbolic cumulant calculations for
frequency domain time series,” Statistics and Computing, vol.
11, no. 1, pp. 75–82, January 2001.

[4] D.F. Andrews and J.E. Stafford, “Iterated full partitions,” Sta-
tistics and Computing, vol. 9, pp. 189–192, 1998.

[5] V.P. Leonov and A.N. Shiryaev, “On a method of calculation for
semi-invariants,” Theory of Probability & its applications, vol.
4, pp. 319–329, 1959.

[6] J.M. Mendel, “Tutorial on higher-order statistics (spectra) in
signal processing and system theory: Theoretical results and
some applications,” Proc. IEEE, vol. 79, pp. 278–305, 1991.

[7] D.R. Brillinger and M. Rosenblatt, Asymptotic Theory of K-th
Order Spectra, Spectral Analysis of Time Series. Wiley, 1967.

[8] R.S. Varga, Matrix Iterative Analysis, Springer, 2nd edition,
1999.

[9] I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials,
Academic Press, New York, 1982.

III ­ 699

