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ABSTRACT

Estimating the parameters of multivariate distributions whose den-

sities or masses cannot be expressed in tractable closed-form is a

challenging problem. This paper concentrates on a family of such

discrete distributions referred to as multivariate mixed Poisson dis-

tributions (MMPDs). These distributions are interesting for mod-

eling correlations between adjacent pixels of active and astronom-

ical images. Several estimators of MMPD parameters are investi-

gated. These estimators include a composite likelihood estimator

and a non-linear least squares estimator.

1. INTRODUCTION

This communication addresses the problem of estimating the sta-

tistical properties of wavefront amplitudes from intensity measure-

ments. It assumes that the wavefront amplitude results from the sum

of incoherent complex Gaussian components. Moreover it considers

that the resulting intensities are very low and are recorded using a

photocounting camera. This model arises in many optical systems

encountered in active and astronomical imagery:

• Active imaging consists of forming an image of a scene which

has been illuminated with laser light. The main advantages of

this technique are to allow night vision and to improve image

resolution for a given aperture size (see [1] for more details).

When the intensity level of the reflected light is very low,

the observed images are corrupted by two sources of noise:

speckle noise and Poisson noise. The speckle fluctuations

are classically modeled by a Gamma distribution of order L
which results from the sum of L incoherent waves with zero
mean Gaussian distributed complex amplitudes.

• Increasing interest has been shown in the astronomical com-

munity for the direct imaging of extrasolar planets. As ex-

plained in [2], the complex amplitude of a wave in the focal

plane of a telescope is the sum of a deterministic term pro-

portional to the wave amplitude in absence of turbulence and

a wavefront amplitude (associated to the speckles) distributed

as a zero mean complex circular Gaussian distribution. The

speckle fluctuations are modeled in this case by a Rice dis-

tribution. The Poisson noise arises from the short exposure

times and the low intensity of the observed objects.

This paper is organized as follows. Section 2 discusses the statistical

properties of the observed data. Section 3 is devoted to the estima-

tion of the wavefront parameters. In the general case, two methods

of moments are compared: a “classical” approach and an optimal
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one which is based on a non-linear least squares minimization. In

the special case were the wavefronts are zero mean, the estimation

can also be achieved by maximizing a composite likelihood of the

measurements. Section 4 compares the performance of the different

estimators. Conclusions are reported in section 5.

2. SIGNAL MODEL AND PROBLEM FORMULATION

2.1. Intensity Distribution

We assume that the M × 1 vectors containing the complex ampli-

tudes ψ(k) of the L incoherent waves are independent circular Gaus-

sian vectors:

ψ(k) ∼ Nc(µ(θ),Σ(θ)), (1)

where k = 1, ..., L, µ(θ) ∈ R
M and Σ(θ) is an M ×M covariance

matrix. The resulting M×1 vector of intensities λ = (λ1, ..., λM )T

has components:

λq =
LX

k=1

|ψq(k)|2, q = 1, ..., M. (2)

Eq. (2) shows that λk is proportional to a random variable distributed

according to a noncentral χ2 distribution with 2L degrees of freedom

[3]. Note that:

• the case µ(θ) = 0 leads to the Gamma distribution of order

L encountered in active imaging,

• the case L = 1 leads to the Rice distribution (or equivalently

a noncentral χ2 distribution with 2 degrees of freedom) men-

tioned above.

The multivariate distribution of λ is more complicated to derive. It

can be obtained by noting that λ is the diagonal of the M×M matrixPL

k=1 ψ(k)ψ(k)H which has a noncentral Wishart distribution [4].

Consequently, the distribution of λ is the ad-hoc marginal of this

distribution1:

λ ∼ “diagonal of” Wm(2L,Σ(θ)/2,Σ(θ)−1
µ(θ)µ(θ)t).

This approach has been adopted in [5] and has allowed to derive a

general formula to compute the moments of λ. However, whereas

the moment generating function of λ has a simple closed form ex-

pression, the computation of its probability distribution function (pdf)

is untractable in the general case.

1This result allows to derive identifiability conditions for model (1,2).
These conditions are not developed here for a problem of space.
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2.2. Photocount distribution

The vector of intensities λ described before corresponds to the case

where the image has been recorded under a high flux assumption.

However, for low-flux objects or short exposure time, the photo-

counting effect has to be considered. Denote as Ni the number of

photons associated to the intensity λi. Conditioned upon the vec-

tor of intensities λ, the random variables Ni, i = 1, . . . , M are

independent and distributed according to Poisson distributions with

means λi. In this case, the probability masses of N = (N1, . . . , NM )
are defined as:

Pr(N = k) =

Z
· · ·

Z
(R+)d

Y
�

(λ�)
k�

k�!
exp (−λ�)p(λ)dλ, (3)

where k = (k1, ..., kd) ∈ N
d and p(λ) is the pdf of λ defined in

section 2.1. The distribution of N is a multivariate mixed Poisson

distribution. Eq. (3) is also known as the Poisson-Mandel transform

of p(λ) in the semiclassical theory of photodetection [6].

Tractable expressions of Pr(N = k) defined in (3) are obviously

difficult to obtain. However, many interesting properties regarding

the distribution of N can be derived in the monovariate [7] and in

the multivariate cases [8]. In particular, the joint moments of N can

be computed as follows:

E

"
dY

k=1

Nrk

k

#
=

r1X
j1=0

· · ·

rdX
jd=0

dY
k=1

S(rk, jk)E

"
dY

k=1

λjk

k

#
, (4)

where S(j, k) are the Stirling numbers of the second kind [9] (the

Stirling number S(rk, jk) is the number of partitions of jk elements

obtained from a set with rk elements).

3. ESTIMATION ALGORITHMS

This section addresses the problem of estimating the parameter vec-

tor θ defined in (1) from the observations of n independent sequences

N [i], i = 1, ..., n distributed according to (3). This problem is chal-

lenging since there is no tractable expression for the intensity pdf

p(λ) and for the masses Pr(N = k) in the general case.

3.1. Estimation in the central case

When µ(λ) = 0, it has been demonstrated in [8] that the distribution

of λ belongs to the multivariate Gamma distribution family. Conse-

quently, the Poisson-Mandel transform of λ belongs to the negative

multinomial family (the reader is invited to consult [8],[10] for more

details). The general expression of the multinomial distribution as-

sociated to the intensities (2) is unmanageable for realistic problems

when M > 2. However, an expression of the bivariate distribution

Pr(Nj = kj , Nl = kl) can be derived. This bivariate distribution

was used to estimate the parameter vector θ for longitudinal count

data [11] and for active images [12]. The proposed strategy con-

sisted of maximizing an appropriate composite likelihood function

l(θ) summarizing all information regarding the pairs (Nj , Nl):

l(θ) =
nX

i=1

X
1≤j<l≤M

log
“

Pr(N
[i]
j = ki

j , N
[i]
l = ki

l)
”

.

As long as the pairwise likelihood depends on θ, this algorithm

yields a consistent estimator denoted as θ̂CL
n under appropriate reg-

ularity conditions.

3.2. Estimation in the noncentral case

Unfortunately, the problem is much more complicated when µ(θ) �=
0, since the likelihood of the pair (Nj , Nl) is not manageable for

practical problems (see [13] or [4] for an expression of this likeli-

hood). Instead, this paper proposes to estimate the parameters by

using moment methods.

3.2.1. Algorithm framework

Estimating the unknown parameters of a given time series by match-

ing its estimated and theoretical moments is a classical strategy. Of

course, this approach requires to have an explicit expression of the

theoretical moments as a function of the unknown parameters. In

our case, this expression can be obtained by combining (4) with the

general expression of the joint moments of λ derived in [5].

The last part of this section recalls some important results on pa-

rameter estimation by using moment methods. Consider a function

h(.) : R
M → R

L and the size L statistic defined as:

sn =
1

n

nX
i=1

h(N [i]), (5)

and denote as:

E[sn] = f (θ) = E[h(N [1])], (6)

ncov[sn] = C(θ) = cov[h(N [1])]. (7)

Note that an appropriate choice of h(.) leads to statistics sn com-

posed of empirical moments. In particular, we will focus in the se-

quel on the two estimators:

θ̂
1
n = g(sn) where g(f (θ)) = θ, (8)

θ̂
2
n = arg min

x

1

2
(f(x) − sn)t

C(x)−1(f (x) − sn). (9)

As mentioned above, the expressions of f (θ) and C(θ) are obtained

from (6,7) by combining (4) with [5].

The asymptotic performance of estimators θ̂1
n and θ̂2

n can be derived

by imitating the results of [14] derived in the context of time series

analysis (n = 1 and M → ∞). A key point of these proofs is the

assumption sn
a.s.
→ f (θ) which is verified herein by applying the

strong law of large numbers to (5). As a result, the asymptotic mean

square error of θ̂1
n and θ̂2

n can be derived:

lim
n→∞

nE[(θ̂1
n − θ)2] = G(θ)C(θ)G(θ)t, (10)

lim
n→∞

nE[(θ̂2
n − θ)2] = B(θ) = (F (θ)C(θ)−1

F (θ)t)−1, (11)

where G(θ) and F (θ) are the Jacobian matrices of the vectors g(θ)
and f (θ). Another important theorem in the framework of moment

methods is:

G(θ)C(θ)G(θ)t ≥ B(θ), (12)

where ≥ means that the difference between the two matrices is pos-

itive definite. Since B(θ) uses only the statistical properties of sN ,

B(θ) provides a lower bound on the asymptotic variances of all es-

timators constructed from functions f (.) as described above.
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3.2.2. Second order moment method

The following function h will be considered in what follows the:

h(x) = (x1, . . . , xM , x2
1, . . . , x

2
M , x1x2, . . . , xM−1xM ), (13)

i.e. θ̂1
n and θ̂2

n rely only on first and second order moments of the

observations. Extension to correlations with lags higher than one is

straightforward and will be discussed in section 4.

The estimation procedure described in the previous section requires

to determine the first and second-order moments of the sample statis-

tic (6, 7). The mean f (θ) depends on:

E[Nk] = E[λk], (14)

E[NkNq] = E[λkλq] + δ(k − q)E[λk]. (15)

The variance C(θ) depends on cov[Nk, Nl] and on:

cov(Nr, NsNt) = E[NrNsNt] − E[Nr]E[NsNt],

cov(NrNs, NtNu) = E[NrNsNtNu] − E[NrNs]E[NtNu].

When the indexes r, s, t and u are different, the following results are

obtained:

E[NrNsNt] = E[λrλsλt], E[N2
r Ns] = E[λ2

rλs] + E[λrλs],

E[N3
r ] = E[λ3

r] + 3E[λ2
r] + E[λr],

E[NrNsNtNu] = E[λrλsλtλu],

E[N2
r NtNu] = E[λrλtλu] + E[λ2

rλtλu],

E[N3
r Nu] = E[λrλu] + 3E[λ2

rλu] + E[λ3
rλu],

E[N2
r N2

u] = E[λrλu] + E[λ2
rλu] + E[λrλ

2
u] + E[λ2

rλ
2
u],

E[N4
r ] = E[λ4

r] + 7E[λ2
r] + 6E[λ3

r] + E[λ4
r].

The next step consists of expressing intensity moments versus the

mean µ(θ) and the covariance Σ(θ) of the Gaussian variables ψk.

This can be done by using the general result on moments of noncen-

tral Wishart matrices given in [5]. An alternative is to replace λk

by (2) in E[
Q

r
λr] and to expand the products. The higher order

moments of ψk are then computed by using the classic expansion of

a moment in terms of its cumulants. This expansion is simple here

since all cumulants of ψk of order greater than 2 are equal to zero.

4. SIMULATION RESULTS

The simulations conducted in this paper have been obtained with the

following parameters:

L = 1, Σ(θ)k,l = σ2ρ|k−l|, µ(θ)k = µ, (16)

and θ = (µ, ρ, σ2). The mean E[Nk] and the second order moments

E[N2
k ], E[NkNk+1] for this model are:

1 ≤ k ≤ M : f(θ)k = σ2 + µ2,

M < k ≤ 2M : f(θ)k = µ4 + 2σ4 + 4σ2µ2 + σ2 + µ2,

2M < k ≤ 3M − 1 : f(θ)k = (µ2 + σ2)2 + ρ2σ4 + 2ρσ2µ2.

The function g(.) : R
3M−1 → R

3 required to compute θ̂1
n is ob-

tained after expressing µ, σ2 and ρ as functions of xk = f(θ)k:

g(x)1 =
p

x̄ + 2x̄2 − ȳ, g(x)2 = x̄ − g(x)1, (17)

g(x)3 =
−g(x)1 +

p
g(x)21 + z̄ − x̄2

g(x)2
. (18)

with

x̄ =
1

M

MX
i=1

xi, ȳ =
1

M

2MX
i=M+1

xi, z̄ =
1

M − 1

3M−1X
i=2M+1

xi.

4.1. Central case

The active imaging model corresponds to µ(θ) = 0 or equivalently

to the unknown parameter vector θ = (ρ, σ2). Figure 1 compares

the performances of the composite likelihood (CL) estimator with

the two moment estimators defined in (8) and (9) (referred to as Mo-

ment and NLLS estimators, respectively). The parameters used in

these simulations are ρ = 0.8 and σ2 = 2 and the number of Monte

Carlo runs is 500. Figure 1 shows that the empirical MSEs of bρ
(computed from the 500 Monte Carlo runs) are in good agreement

with the theoretical ones given in (10), (11) and derived in [12] for

the CL estimator. Figure 1 also shows that the NLLS estimator for

parameter ρ is outperformed by the CL estimator. The results ob-

tained for parameter σ2 are not presented her for brevity. However,

it turns out that the MSEs of cσ2 are very similar for the NLLS and

CL methods.
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Fig. 1. Log MSE of ρ (500 Monte Carlo runs)

4.2. Noncentral case

The model used for exoplanet imaging requires µ(θ) �= 0. As ex-

plained above, the CL estimator cannot be derived in this context.

This section compares the performance of the NLLS estimator with

that obtained with the Moment estimator.

Figure 2 shows the corresponding empirical MSEs computed with

500 Monte Carlo runs (the parameters are µ = 2, σ2 = 2 and

ρ = 0.8). The theoretical asymptotic MSEs for both methods (pro-

vided in (11) and (10)) are also displayed. The empirical MSEs are

clearly close to their asymptotic theoretical values. Moreover, it is

possible to appreciate the better performance of the NLLS method.

The performance obtained for parameters µ and σ2 has not been pre-

sented here for brevity. However, the MSEs for these parameters are

very close for both estimation methods.
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Since the empirical and asymptotic MSEs for the Moment and NLLS

estimators match in the previous experiment (i.e. for these values of

n), the theoretical expressions of the unknown parameter MSEs can

be used to determine the number of moments required to assess a

given performance. In particular, second order moments involving

lags > 1 (in addition to moments corresponding to lag 1) might

improve the estimation performance. The asymptotic MSEs for pa-

rameter ρ are depicted on figure 3 as a function of the number of

lags (for instance, when the number of lags is 3, the NLLS estima-

tor considers the following moments E[Nk], E[N2
k ], E[NkNk+1],

E[NkNk+2] and E[NkNk+3]) for a fixed value of M . This figure

shows that the asymptotic MSE for parameter ρ decreases when the

number of moments increases (as expected). However, the NLLS

estimator complexity is an increasing function of the number of mo-

ments. The usual tradeoff between efficiency and computational cost

might be used to select the appropriate number of moments used in

the estimation. The behavior of the moment estimator versus the

number of lags differs significantly from the NLLS estimator. In-

deed, the MSEs for parameter ρ are not a decreasing function of the

number of lags. Figure 3 shows that there is an optimal value of the

number of lags (equal to 5) yielding a minimum MSE.

5. CONCLUSIONS

The parameters of multivariate mixed Poisson distributions can be

estimated by the classical method of moments, by minimizing an ap-

propriate non-linear least squares criterion or by maximizing a com-

posite likelihood function. This paper compared the performance

of these estimators for active images and astronomical images. The

non-linear least squares estimator showed good properties for both

classes of images. The application to real images is currently under

investigation.
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