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ABSTRACT

We analyze the parameter estimation Mean Square Error when
the Fisher Information Measure is zero at some points within the
parameter space. At these points the Cramér-Rao Lower Bound di-
verges and no unbiased estimator can achieve a finite Mean Square
Error. Under mild regularity conditions the Maximum Likelihood Es-
timator is known to be asymptotically unbiased and therefore lower
bounded by the Cramér-Rao Lower Bound [1]. It is therefore of in-
terest to examine the Maximum Likelihood Estimator performance
in the presence of vanishing Fisher Information Measure. We pro-
vide new theoretical and practical results. All results are corrobo-
rated by simulations.

1. INTRODUCTION

This work is motivated by the simple example of a linear sensor ar-
ray used for measuring direction of arrival, θ, with respect to the
array normal. The Cramér-Rao Lower Bound (CRLB) in this case
is inversely proportional to cos2(θ) and therefore diverges as θ ap-
proaches π/2. The mean square error (MSE) of the Maximum Like-
lihood Estimator (MLE) is expected to diverge as well since the MLE
is an asymptotically unbiased estimator with variance lower bounded
by the CRLB [2]. However, both simulations and real systems show
that this is not the case and the MSE is well behaved even when
θ = π/2. In this work we explore the MSE for points in the pa-
rameter space where the Fisher Information Measure (FIM) is zero
and the CRLB diverges. Special attention is given to the vicinity of
the parameter interval end points and to points in the vicinity of zero
FIM.

2. PROBLEM FORMULATION AND DEFINITIONS

We wish to estimate a real deterministic parameter, θ, known to be
within a closed interval Θ ≡ [a, b]. The estimation is based on
N measurements yn = h(θ) + vn, n = 1, · · · , N , where {vn}
are independent, identically distributed (i.i.d.), zero mean, Gaussian
random variables with variance σ2

v i.e., vn ∼ N
�
0, σ2

v

�
), and φ =

h (θ), is a non-decreasing function in the interval θ ∈ Θ. We define

A
∆
= h (a) , B

∆
= h (b) so that φ ∈ Φ ≡ [A, B]. The inverse func-

tion θ = h−1 (φ) exists in the interval φ ∈ Φ and is non-decreasing,
continuous, and smooth, except for a finite number of points where
the derivative diverges (these are the zero FIM points). Define the

sample mean: ȳ
∆
= 1

N

N�
n=1

yn. By definition and the invariance prop-

erty we have:

φ̂ML
∆
= argmax

φ∈Φ
fy

�
y; φ

�
=

��
�

ȳ A ≤ ȳ ≤ B
A ȳ < A
B B < ȳ

(1)

and:
θ̂ML

∆
= argmax

θ∈Θ
fy

�
y; θ

�
= h−1

�
φ̂ML

�
(2)

We extend, for convenience, the definition of the inverse function
outside it’s domain:

h−1 (x)
∆
=

��
�

h−1 (x) A ≤ x ≤ B
a x < A
b B < x

(3)

Now, it is possible to express the estimator as a function of the sam-
ple mean:

θ̂ML = h−1 (ȳ) (4)

Let us define the equivalent noise as v̄
∆
= 1

N

N�
n=1

vn. Obviously,

v̄ ∼ N
�
0, σ2

N

�
where σ2

N

∆
= σ2

v

�
N . Define a ”centered” function

that will enable expressing the estimation error as a function of the
equivalent noise:

gθ (x)
∆
= h−1 (h (θ) + x) − θ (5)

Thus the estimation error is:

θ̂ML − θ = gθ (v̄) (6)

and the MSE (which is a function of θ) is:

MSE
	

θ̂ML



= E

�
gθ (v̄)2

�
=

∞
−∞

gθ (x)2 e
− x2

2σ2
N�

2πσ2
N

dx (7)

The function gθ (x) has the properties:

1.gθ (0) = 0

2.g
(1)
θ (x) ≡ ∂gθ(x)

∂x
= ∂h−1(y)

∂y

���
y=h(θ)+x

≥ 0

3.gθ2 (x) = gθ1 (x + (h (θ2) − h (θ1))) − gθ1 (h (θ2) − h (θ1))
(8)

We can now show that the MSE of the MLE goes to zero as N in-

creases to infinity. Recall that 1√
2πσ2

N

e
− x2

2σ2
N

N→∞→ δ (x) i.e., as N
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increases to infinity, the Gaussian function becomes a Dirac’s delta
function. Substituting in (7) and using property 1 of (8) gives:

MSE
�

θ̂ML

�
N→∞→

∞�
−∞

gθ (x)2 δ (x) dx = gθ (0)2 = 0 (9)

The statement in (9) is rather obvious and not very informative. The
question we want to address is how ”fast” does the MSE decreases
as a function of N at the vicinity of singular points where the FIM
becomes zero. We explore this question directly by evaluating the
MSE and not by analyzing the Cramér-Rao Lower Bound (CRLB).
We provide analysis of the CRLB in another work.

3. POINTWISE ASYMPTOTIC EXPRESSIONS

Our first objective is to produce asymptotic expressions for the MSE
of the MLE. We are interested in the dependence of the MSE on the
number of measurements when θ is fixed, and the number of mea-
surements is large. We replace gθ (x) in (7), with an approximation,
g̃θ (x). A ”good” approximation should satisfy:

��E �
gθ (v̄)2

�− E
�
g̃θ (v̄)2

���
E
�
gθ (v̄)2

� N→∞→ 0 (10)

The normalization is required since all the terms in (10) decrease to
zero as N increases to infinity. Since the Gaussian gets ”narrower”
as N increases, it is fairly easy to achieve (10). For brevity we will
not justify our approximations using (10). However, all of the ap-
proximations in this contribution satisfy (10).

3.1. Non-Zero FIM Points

In this subsection we reproduce well known results in order to pro-
vide a complete discussion. ”Regular” points (non-zero FIM points)
exhibit a MSE which is inverse proportional to the number of mea-
surements. Even though some points may exhibit a MSE which de-
creases ”faster”, these points are not interesting since the overall be-
havior of the domain is inverse proportional to N .

For ”regular” points, the derivative g
(1)
θ (0) doesn’t diverge and

we can use Taylor expansion as our approximation g̃θ (x) (second
and third derivatives subtleties are not addressed here for brevity):

gθ (x)2 = gθ (0)2 + 2gθ (0) g
(1)
θ (0) x+

+ 1
2

�
2g

(1)
θ (0)2 + 2gθ (0) g

(2)
θ (0)

�
x2 + ... =

gθ(0)=0
= 0 + 0x + g

(1)
θ (0)2 x2 + ...

If g
(1)
θ (0) = 0, the MSE decreases ”faster” than N−1. If g

(1)
θ (0) �=

0, Substituting the approximation,

g̃θ (x)2 = g
(1)
θ (0)2 x2 (11)

in (7), gives:

MSE
�
θ̂ML

�
≈ E

�
g̃θ (v̄)2

�
= g

(1)
θ (0)2 σ2

N (12)

which is inverse proportional to N (because σ2
N = σ2

v

�
N ). More

precisely, the interval’s edges should be taken into account. Specifi-
cally, ga (x) = 0 for x < 0 and gb (x) = 0 for x > 0, so for θ = a
or θ = b, assuming these are ”regular” points,

MSE
�
θ̂ML

�
≈ 1

2
g
(1)
θ (0)2 σ2

N (13)
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) as function of θ for different values

of N .

Equation (13) implies a non-uniform convergence. We use an exam-
ple to demonstrate the convergence: h (θ) = θ, A = a = −1, B =

b = 1. Thus, g
(1)
θ (0) = 1. Figure (1) depicts the normalized MSE,

MSE{θ̂ML}
g
(1)
θ

(0)2σ2
N

, as function of θ for different values of σ2
N . Asymptot-

ically, the normalized MSE for every point in the domain converges
to 1, except for the edges, where it converges to 1

2
.

3.2. Zero FIM Points

Let θ1 be a zero FIM point. In order to approximate gθ1 (x) about
the origin, we assume that the derivative diverges according to:

g
(1)
θ1

(x) ≈ κ |x|−β , κ > 0, 0 < β < 1 (14)

Although this assumption doesn’t hold for all cases, it does hold for
most real life applications. Integrating (14) we obtain

gθ1 (x) ≈ κ

1 − β
|x|1−β sign (x) (15)

Squaring (15) we get

gθ1 (x)2 ≈
	

κ

1 − β


2

x2(1−β) (16)

Substituting the approximation (16) in (7) yields,

MSE
�

θ̂ML

�
≈

∞�
−∞

	
κ

1 − β


2

x2(1−β) e
− x2

2σ2
N�

2πσ2
N

dx (17)

Define the function:

Fβ (α)
∆
= |α|2(1−β) +

+ 21−β√
π

�
 Γ

�
3
2
− β

�
1F1

�
β − 1, 1

2
,−α2

2

�
−

− |α|2−β 21+ β
2 Γ

�
3
2
− β

2

�
1F1

�
β
2
, 3

2
,−α2

2

�
�
�
(18)

where Γ (z) is the gamma function and 1F1 (a, b, z) is the confluent
hypergeometric function of the first kind. Using this definition, the

right side of (17) can be shown to be
�

κ
1−β

�2

Fβ (0)
�
σ2

N

�1−β
, thus

for θ = θ1:

MSE
�

θ̂ML

�
≈
	

κ

1 − β


2

Fβ (0)
�
σ2

N

�1−β
(19)
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Fig. 2. Asymptotic MSE behavior as function of σ2
N for ”regular”

and zero FIM points. ”Regular” points exhibit a slope of 1, whereas
the zero FIM point exhibits a slope of 1− β (the ”DC level” is irrel-
evant here).

The MSE decreases as N−(1−β) which is ”slower” than N−1. Fig-
ure (2) demonstrates this difference in the decreasing rate of the MSE
as function of σ2

N . For ”regular” points, the slope is 1, whereas for
zero FIM point the slope is 1 − β. We define another function (the
purpose of the functions Fβ (α) and Gβ (α) will become clear in the
next section):

Gβ (α)
∆
= |α|2(1−β) +

+ 2
1
2−β
√

π

�
�

Γ( 3
2−β)√

2 1F1

�
β − 1, 1

2
,−α2

2

�
+

+ |α|Γ (2 − β) 1F1

�
β − 1

2
, 3

2
,−α2

2

�
�
�−

− |α|1−β 2
1− β

2√
π

�
�

Γ(1− β
2 )√

2 1F1

�
β−1

2
, 1

2
,−α2

2

�
+

+ |α|Γ � 3
2
− β

2

�
1F1

�
β
2
, 3

2
,−α2

2

�
�
�

(20)
If θ1 = a or θ1 = b then for θ = θ1:

MSE
�

θ̂ML

	
≈



κ

1 − β

�2

Gβ (0)
�
σ2

N

�1−β
(21)

It can be easily verified that Gβ (0) = 1
2
Fβ (0). This corresponds to

the observation made in (13).
In summary, we obtained pointwise asymptotic expressions for the
MSE of the MLE for regular points and zero FIM points. We showed
that the MSE of a zero FIM point exhibits a slower decreasing rate.

We define the zero FIM normalized MSE as
MSE{θ̂ML}�

κ
1−β

�2
Fβ(0)(σ2

N)1−β .

The zero FIM normalized MSE converges to 1 as N → ∞ at θ = θ1

or to 1
2

if θ1 = a or θ1 = b, but converges to zero elsewhere! This
implies a non-uniform convergence. That means that there is no N ′

large enough to ensure that for any N > N ′, the MSE over the whole
domain satisfy the asymptotic behavior, i.e., for any finite N , there
is a region around the zero FIM point, which is ”far” from reaching
the N−1 asymptotic behavior. This is the reason we used the term
”pointwise”. A few interesting questions arise:

1. For a given N , is the largest MSE necessarily at θ = θ1? If
not, why, and what is the value of the worst MSE?

2. What is the highest ratio between the MSE and the asymptotic
behavior? is there a bound on this ratio?

We examine these questions in the next section.

4. THE VICINITY OF THE ZERO FIM POINT

We keep the notation of θ1 being a zero FIM point. Let θ2 be a
nearby point and define the normalized distance between the two
points:

α
∆
=

h (θ2) − h (θ1)

σN
(22)

Using (15), property 3 of (8) in (7), it can be shown that for θ = θ2:

MSE
�

θ̂ML

	
≈



κ

1 − β

�2

Fβ (α)
�
σ2

N

�1−β
(23)

which is a generalization of (19). Similarly, if θ1 = a or θ1 = b,
then for θ = θ2:

MSE
�

θ̂ML

	
≈



κ

1 − β

�2

Gβ (α)
�
σ2

N

�1−β
(24)

which is a generalization of (21). The conclusions are:
1. Obviously, the worst MSE is in the vicinity of the zero FIM

point but not necessarily at the point itself. This happens since
the MSE is affected not only by the variance, but also by the
bias. A nearby point, may have a greater bias than the bias
at the zero FIM point, while having almost as large variance,
thus having a greater MSE. By finding the maximum value
and position of Fβ (α) (or Gβ (α)), we get the worst case
MSE. Further, when the position of the maximum is not at
the origin, equations (23) and (24) indicate that this position
is at fixed normalized distance from the zero FIM point.

2. Let θ2 be at a small fixed absolute distance from θ1. g
(1)
θ2

(0) =

g
(1)
θ1

(ασN ). Using that with (14) in (12), the asymptotic MSE

for θ = θ2 is
�
κ |ασN |−β

2
σ2

N = κ2 |α|−2β �σ2
N

�1−β
. Un-

til reaching this asymptotic behavior, the MSE is given by
(23) (or (24)). Define:

ratioβ (α)
∆
=



1

1 − β

�2

Fβ (α) |α|2β (25)

Now note that the normalized MSE for θ = θ2:

MSE
�

θ̂ML

	

g
(1)
θ2

(0)2 σ2
N

≈
�

κ
1−β

�2

Fβ (α)
�
σ2

N

�1−β

κ2 |α|−2β (σ2
N )

1−β
= ratioβ (α)

(26)
(if θ1 = a or θ1 = b, use Gβ (α) instead of Fβ (α) in

(25)). This suggests that ratioβ (α)
α→∞→ 1, which can be

easily verified for either Fβ (α) or Gβ (α). The smaller the
distance |h (θ1) − h (θ2)|, the larger the required N for as-
ymptotic behavior.

5. EXAMPLES

5.1. Zero FIM point within the parameter’s domain

Let φ = θ3, A = a = −1, B = b = 1. It follows that ∂h−1(x)
∂x

=
1
3
|x|− 2

3 (i.e. κ = 1
3
, β = 2

3
,see (14)) and g

(1)
θ (0) = 1

3

��θ3
��− 2

3 =
1

3θ2 . The asymptotic MSE for ”regular” points (12), is therefore:

g
(1)
θ (0)2 σ2

N = 1
9θ4 σ2

N and the zero FIM point is θ1 = 0. Figure
3(a) depicts F 2

3
(α). Note that the maximum is not at α = 0. Figure

3(b) shows that for any point in the domain, the MSE is at most 5
(approximately) times the MSE predicted by the ”regular” asymp-
totic expression. Figure 4 and 5 shows the normalized MSE and the
zero FIM normalized MSE, respectively.
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Fig. 3. Example 1. (a) Fβ (α) and (b) ratioβ (α).
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Fig. 4. Normalized MSE for Eaxmple 1. The closer the point to the
zero FIM point, the larger the required N for asymptotic behvior.

5.2. Zero FIM point on the parameter’s domain edges

When two spatially separated antennas receive the transmission from
a far-field point source, the phase difference between the observed
signals is proportional to the sine of the transmitter bearing with re-
spect to the normal of the antennas baseline. This fact is frequently
used for bearing estimation. Let φ = sin (θ) , θ ∈ �−π

2
, π

2

�
, φ ∈

[−1, 1]. It follows that ∂h−1(x)
∂x

= 1√
1−x2

x=−1+ε
= 1√

1−(−1+ε)2
≈

1√
1−(1−2ε)

= 1√
2
ε−

1
2 (i.e. κ = 1√

2
, β = 1

2
) and g

(1)
θ (0) =

1√
1−sin(θ)2

= 1
|cos(θ)| . The asymptotic MSE for ”regular” points

(12), is therefore:g(1)
θ (0)2 σ2

N = 1
cos(θ)2

σ2
N and the zero FIM point
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Fig. 5. zero FIM normalized MSE for Example 1. The point with
the worst MSE gets closer to the zero FIM point as N increases.
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Fig. 7. Normalized MSE for Eaxmple 2. The closer the point to the
zero FIM point, the larger the required N for asymptotic behvior.

is θ1 = ±π
2
. Figure 6 depicts G 1

2
(α) and ratio 1

2
(α). Figure 7 and

8 shows the normalized MSE and the zero FIM normalized MSE,
respectively.
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