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ABSTRACT

We consider the problem of variance estimation in large-scale
Gauss-Markov random field (GMRF) models. While approx-
imate mean estimates can be obtained efficiently for sparse
GMRFs of very large size, computing the variances is a chal-
lenging problem. We propose a simple rank-reduced method
which exploits the graph structure and the correlation length
in the model to compute approximate variances with linear
complexity in the number of nodes. The method has a sepa-
ration length parameter trading off complexity versus estima-
tion accuracy. For models with bounded correlation length,
we efficiently compute provably accurate variance estimates.

1. INTRODUCTION

We address the problem of estimation in large-scale Gauss-
Markov random field (GMRF) models [1]. GMRFs are multi-
variate jointly Gaussian distributions defined on graphs. The
nodes of the graph denote random variables and the edges
indicate statistical dependencies between variables. GMRFs
can be viewed as generalizations of Markov chains to arbi-
trary undirected graphs. The Markov property for general
graphs (including chains) is that given its neighbors, any node
is independent of the rest of the variables in the model. Marko-
vianity has a very transparent manifestation in GMRFs: the
inverse covariance J = P−1 is sparse according to the graph.
An element Jij is non-zero only if the edge {i, j} belongs
to the edge set of the graph. GMRFs arise in a wide variety
of important practical applications from fields including com-
puter vision, spatial statistics (e.g. geostatistics and oceanog-
raphy), and spline interpolation among others [1]. A proto-
typical application is surface interpolation based on a set of
sparse irregular noisy measurements [3].

Estimating means and variances of hidden variables based
on observations in GMRFs can be done by matrix inversion.
However, for large-scale problems with millions of variables,
exact algorithms such as Gaussian elimination (with O(N3)
complexity in the number of variables, N ) are intractable.
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Approximate mean estimates can be computed with O(N)
complexity for sparse graphs by iterative solvers such as con-
jugate gradients or multigrid techniques. However conditional
means are most useful if the confidence in the estimates (i.e.
variance) is also known.

Variances can be computed by more efficient versions of
Gaussian elimination (based on junction trees) which take the
graph structure into account and reduce the complexity to be-
ing cubic in the “tree-width” of the graph. For square lattice
models, the tree-width is equal to the width of the graph, so
the complexity reduces to O(N3/2). Despite being a great
improvement, this is still intractable for large models; in addi-
tion, the implementation of such algorithms is rather complex.
Approximate methods such as belief propagation (BP) [2]
have linear complexity in N per iteration, but they are not
guaranteed to converge, and convergence may be very slow
for large problems. Even in case of convergence, the BP vari-
ance estimates may be rather poor. For stationary models,
efficient FIR approximations can be used for both means and
variances, but for non-stationary problems such as interpola-
tion from sparse noisy measurements, these approximations
do not apply.

In this paper we propose a rank-reduced method to com-
pute approximate variances with linear complexity in the num-
ber of nodes for large-scale sparse GMRFs. In addition to
its simplicity and speed the method gives unbiased estimates,
and for models with bounded correlation length we prove that
the variance estimates are very accurate. In Section 2 we dis-
cuss estimation with GMRF models. We describe and ana-
lyze our rank-reduced method to compute variance estimates
in lattice models and arbitrary graphs in Section 3. We apply
our method to sea surface height altimetry data in Section 4.

2. ESTIMATION IN GMRF MODELS

A GMRF model is defined by a graph G = (V, E) with ver-
tices V and edges E ⊂

(
V
2

)
, i.e., some set of two-element

subsets of V , and a collection of jointly Gaussian random
variables x = (xi, i ∈ V ) with probability density given in
information form:

p(x) ∝ exp{−
1

2
x′Jx + h′x} (1)
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The matrix J is called the information matrix, and it is sym-
metric positive definite (J � 0) and sparse so as to respect the
graph G: if {i, j} �∈ E then Jij = 0. We call h the potential
vector. These quantities are directly related to the usual pa-
rameterization of Gaussian densities in terms of the mean µ ≡
E{x} and the covariance matrix P ≡ E{(x − µ)(x − µ)′}:

µ = J−1h and P = J−1 (2)

Let A ⊂ V . Define xA to be the vector (xi|i ∈ A) corre-
sponding to the variables in A. Let V \A denote the comple-
ment of A. We use a shorthand V \i � V \{i}. Let N(i) =
{j|{i, j} ∈ E} denote the neighbors of i in the graph. Then
the GMRF model satisfies the Markov property:

p(xi|xV \i) = p(xi|xN(i)), ∀i (3)

We add observations yi of the hidden variables xi, with Gaus-
sian p(yi|xi). Assume that yi is independent of xj and other
yj for j �= i: p(y|x) =

∏
i∈V p(yi|xi). The posterior, p(x|y) ∝

p(y|x)p(x) is a function of x (y is observed and does not
change) that has the same form as p(x). Introducing the ob-
servations modifies the information parameters h and the di-
agonal of J . An estimate of x is specified by the marginals of
p(x|y), the conditional means and variances of x given y.

Example GMRF: thin plate model. Consider the thin plate
model commonly used for data interpolation:

p(x|y) ∝ exp

⎛
⎝−α

∑
i∈V

(xi −
1

Ni

∑
j∈N(i)

xj)
2 − βL(xi, yi)

⎞
⎠

(4)
The first term is the prior enforcing smoothness, i.e. xi should
be close to the mean of its neighbors {xj , j ∈ N(i)}, with
Ni = |N(i)|. The second term is the data term, L(xi, yi) =∑

i∈V (xi − yi)
2, which makes the estimates consistent with

the observations. From this specification, the information
form parameters J and h are readily obtained1.

Given a model in information form, it is of interest to es-
timate the (conditional) means µ and the variances Pii for all
xi. Using matrix inversion for this task is intractable for large-
scale models. Approximate mean estimates can be efficiently
obtained by a sparse linear system solver, since J is sparse.
However, as we described in Section 1, no simple tractable
methods exist to compute the variances in general graphs2.
An estimate of the means is much less insightful when the
confidence in it (the variance) is unknown. Next we describe
a family of rank-reduced methods to provide efficient vari-
ance estimates in GMRFs.

1The thin plate model is Markov on a modification of the graph defining
the thin plate model: edges between nodes two steps away have to be added.

2A new method that has tractable computation of approximate variances
is recursive cavity modeling (RCM) [3]. However, it employs the machinery
of information geometry and is quite involved to implement. In contrast, the
method of this paper is simple and also provides theoretical guarantees of
quality for the variance estimates.
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Fig. 1. Local 2x2 regions for square lattice. Odd blocks are
shaded, and even ones are transparent. Colors: {A, ..,H}.

3. REDUCED-RANK VARIANCE CALCULATION

For sparse graphs where the number of edges is far less than in
the full graph, |E| � |V |2, efficient mean estimates to a given
tolerance can be obtained by a sparse iterative solver: Jµ =
h. If the number of neighbors for every node is bounded by a
small constant (e.g. 4 for lattices), then methods with O(N)
(where N = |V |) complexity may be used for the means.

Sparse iterative solvers can compute the variances as well:
let ei ∈ R

N be the i-th standard basis vector, then the i-th
column of P can be obtained as JPi = ei. This has to be
done N times, at each node: JP = [e1, ..., eN ] = I , leading
to an intractable complexity of O(N2). Note, that in each
vector Pi we are interested in the i-th element only, Pii.

The computation diag(P ) = diag(J−1I) is costly. We
would like to design a low-rank matrix BB′, with B ∈ R

N×M

and M � N , and use it instead of I . Let all rows bi of B have
unit norm: b′ibi = 1. Consider the quantity diag(J−1(BB′))
which is tractable to compute. Then:

P̂ii � [J−1(BB′)]ii = Pii +
∑
i�=j

Pij b′ibj (5)

To force P̂ii to be accurate estimates of the variances we need
Pij b′ibj to be nearly zero for all pairs of nodes. For a wide
class of models, correlation Pij decays with distance from i
to j. We define the correlation length d as the distance after
which Pij decreases to a small fraction3 of Pii. For nodes
which are far away in the graph (further than the correla-
tion length), Pij is negligible. For nodes which are nearby,
the terms bi and bj have to be (nearly) orthogonal. Thus
we are led to the problem of designing an overcomplete ba-
sis {bi ∈ R

M} which is nearly orthogonal with respect to a
graph G. We describe such a construction for rectangular lat-
tices first, and in Section 3.3 we extend it to arbitrary graphs.

Constructing B in rectangular lattices. Consider a rectan-
gular K × L lattice (with N = KL total variables). Partition
the lattice into small blocks of size l × l in a checker-board

3If d depends on i, then we take the maximum over i.
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pattern, see Figure 1. We partition the nodes into M = 2l2

classes (we call them colors), with l2 in even blocks and l2

in odd blocks. The minimum distance (shortest path in the
graph) between nodes of the same color is 2l. We choose
the vectors bi and bj to be orthogonal if nodes i and j have
different colors: for each class c ∈ {1, ..,M} we allocate a
1-dimensional subspace, e.g. span(ec), where ec ∈ R

M (c-th
standard basis vectors for R

M ). Thus Pij b′ibj = 0 for nodes
of different color. We randomly assign directions along ec to
each node in the class: bi = siec, where si ∈ {−1, 1} are
independent. By making the separation length l comparable
to the correlation length in the model, we satisfy the condition
Pij b′ibj ≈ 0 for nodes i and j of the same color.

Algorithm summary:
1) Construct B ∈ R

N×M .
2) For each color c = 1, ..,M :

i) Let b equal the c-th column of B. Solve Jr = b.
ii) For each node i with color c, P̂ii = siri.

3.1. Properties of the estimate P̂

Next, we show that our reduced rank computation is tractable,
unbiased, and the error in the estimates can be driven to zero
by taking the separation length large enough. In terms of com-
putational complexity, the approximate solution of JR = B
has complexity O(MN) using iterative solvers. The step of
post-multiplication by B′, i.e. P̂ii = [RB′]ii requires MN
operations (we only need the diagonal). Hence, for fixed num-
ber of colors M , the complexity is linear in N .

Unbiased. The estimates P̂ii are unbiased. E[P̂ii] = Pii +∑
j �=i PijE[b′ibj ]. But, E[b′ibj ] = 0 both for nodes of differ-

ent color (due to orthogonality), and for nodes of the same
color c, since bi = siec, with independent si: E[sisj ] = 0.

Variance of the estimates. Suppose that the correlations Pij

fall off exponentially with the distance d(i, j) between i and
j, i.e. Pij ≤ A αd(i,j), with 0 ≤ α < 1. This is true for a wide
class of models including Markov models on bipartite graphs.
Now, Var(P̂ii) = E[(P̂ii−Pii)

2] = E[(
∑

j �=i Pijb
′
ibj)

2]. Let
C(i) be the set of nodes of the same color. For j /∈ C(i),
b′ibj = 0. Using iterated expectations, we have:

Var(P̂ii) = E

⎧⎪⎨
⎪⎩

E

⎧⎪⎨
⎪⎩

⎛
⎝ ∑

j∈C(i)\i

Pijb
′
ibj

⎞
⎠

2

| bi

⎫⎪⎬
⎪⎭

⎫⎪⎬
⎪⎭

= E

⎧⎨
⎩

∑
j∈C(i)\i

P 2
ij E

{
(b′ibj)

2 | bi

}
⎫⎬
⎭ (6)

=
∑

j∈C(i)\i

P 2
ij E

{
(b′ibj)

2
}

=
∑

j∈C(i)\i

P 2
ij

The equation in the second line holds because variance of a

sum of conditionally independent random variables equals the
sum of the variances. The equation in the third line uses lin-
earity of expectation, and that (b′ibj)

2 = 1, ∀j ∈ C(i).
In a lattice model with our construction, the number of

nodes of a given color which are (2l)n steps away is 8n (all
the distances between nodes of the same color are integer
multiples of 2l). Using the exponential decay bound, for nodes
j with d(i, j) = 2nl, Pij = A α2nl. Hence,

∑
j∈C(i)\i

P 2
ij ≤

∞∑
n=1

8nA2 α4nl = 8A2 α4l

(1 − α4l)2
(7)

We have used the following series:
∑∞

n=1 nβn = β
(1−β)2 .

Thus, Var(P̂ii) ≤ 8A2 α4l

(1−α4l)2
. Since, |α| < 1, we can

choose l large enough such that the variance of the estimate is
below any desired threshold. In practice, l should be chosen
to be comparable to the correlation length of the model.

The above error bounds and the fact that our method is un-
biased make it especially attractive compared to a windowing
method4, where such guarantees are not available.

3.2. Efficient preconditioners

Our reduced-rank method estimates the variances by solving
M systems of linear equations, all sharing the same linear op-
erator, J . It is thus beneficial to design a good preconditioner
for J to improve the convergence speed of the sparse itera-
tive solvers such as Richardson iterations or conjugate gradi-
ents [4]. A preconditioner for a linear system Jx = y is a ma-
trix Q such that the system QJx = Qy is easier to solve (the
matrix QJ is better conditioned than J). Ideally, Q = J−1,
making the transformed linear system trivial. However, ap-
plying Q in this case is as hard as solving the original prob-
lem. The inverse of the diagonal or tridiagonal part of J are
examples of easily computable preconditioners.

For the lattice GMRF model a very efficient set of precon-
ditioners based on embedded trees (ET) has been developed
in [4]. The idea is that for models with a tree-structured graph
G, inversion of the information matrix J is extremely efficient
- it can be done in O(N) operations. Hence for general graphs
G, [4] uses spanning trees T ⊂ G with Q = J−1

T . We use a
variant5 of ET in experiments in Section 4.

3.3. Node class definition for arbitrary graphs

We propose to extend our coloring construction from lattices
to arbitrary graphs. For an arbitrary graph G we would like to
divide the vertices into M disjoint subsets, such that any two
nodes belonging to the same subset are separated by at least l

4At each node an exact estimate over a small window is produced, ignor-
ing the rest of the graph.

5We use alternating sets of narrow induced subgraphs. In Richardson iter-
ations this guarantees convergence by equivalence with block Gauss-Seidel.
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Fig. 2. Errors in variance estimates vs. separation length l.

steps. We approach this problem by approximate graph color-
ing in an augmented graph. For a desired minimum distance
l we connect every pair of nodes that are within l steps away
by an edge. Assigning M colors such that no neighbors in
the augmented graph share the same color would solve our
problem. This is a graph coloring problem, and it is known
to be hard. We settle for an approximate solution that allows
a few violations and uses more than the minimum required
number of colors. Fast techniques for approximate graph col-
oring include belief propagation (in max-product form), and
eigen-decomposition-based methods [5]. After defining the
node classes, variances can be estimated in the same way as
for lattices. The method is expected to be useful for graphs
which have the topology where for any given node only a few
nodes are “near”, and most nodes are “far”.

4. RESULTS

We now apply the approximate variance calculation method
to the ocean surface height data collected along the tracks of
Jason-1 satellite6. We compute the variance of the estimates
over the Pacific ocean region. The data is sparse and highly
irregular. We use the thin-plate model for the data. First,
we select a moderate resolution for which exact estimation of
variances using the junction tree method is feasible, and com-
pare the approximate answers from our reduced-rank method
to the exact variances. The size of the model is 288 × 432,
with 0.325 degree spacing in both latitude and longitude. The
plot of mean absolute error in variances versus the separa-
tion length l appears in Figure 2. It can be seen that the er-
rors rapidly decrease to zero, and for region sizes greater than
l = 12, very accurate variances are obtained. We note that
Gaussian belief propagation diverged for this application.

Next we increase the resolution to 0.129 degrees, result-
ing in a grid of size 720 × 1080. Estimating the variance in a
model of this size is beyond what is practical with exact meth-
ods on a single workstation. We use our approximate vari-
ance calculation method. The separation length l is increased
to 30 × 30 to account for the increase in correlation length
when resolution is increased. The resulting estimate appears

6This altimetry data is available from the Jet Propulsion Laboratory
http://www.jpl.nasa.gov. It is over a ten day period beginning 12/1/2004.
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Fig. 3. Uncertainty estimates of Pacific ocean surface height
based on measurements along satellite tracks, 720x1080 grid.

in Figure 3. The regions over land are ignored (in black). The
variances are lowest near the measurements (along the tracks)
as expected.

5. CONCLUSION

We presented a scalable tractable approach to calculate ap-
proximate variances in large scale GMRF estimation prob-
lems. We justified the approach both theoretically and with
experiments on satellite altimetry data. An important direc-
tion for further work is to develop a multiscale version of the
approach to decrease the correlation length at the finest scale,
and make it viable for a wider class of models.
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