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ABSTRACT

We consider the problem of optimal waveform selection. We would
like to choose a small subset from a given set of waveforms that
minimizes state prediction mean squared error (MSE) given the past
observations. This differs from previous approaches to this problem
since the optimal waveforms cannot be computed offline; it requires
the previous observations. Since the optimal solution to this subset
selection problem is combinatorially complex, we propose a convex
relaxation of the problem and provide a low complexity suboptimal
solution. We present a specific model and show that the performance
of this suboptimal procedure approaches that of the optimal wave-
forms.

1. INTRODUCTION

Over the past decade, the problem of optimal waveform design has
found important applications in synthetic aperture radar (SAR), au-
tomatic target recognition and radar astronomy [1]. Based on the
application, waveform design may depend on various optimality cri-
teria, e.g., target classification [2], accurate reconstruction of a high
resolution radar image [3], or estimating a set of target parameters.
One implication of choosing the set of transmitted waveforms opti-
mally is that the backscattered signals will contain maximum target
information.

Most of the work in the area of waveform design involves find-
ing the best functional form of the waveforms suited to a particular
task, e.g., design of waveforms from the radar ambiguity function for
narrowband signals [4] or design of wideband waveforms to resolve
targets in dense target environments [5]. In this paper, we focus on
the optimal waveform selection problem rather than the design of ac-
tual waveforms. We would like to choose only a small subset from
a given set of waveforms. This restriction is typical in radar systems
where there is a constraint on resources such as energy. To assess the
performance of a particular subset of waveforms, we need to define
an optimization criterion such as expected reward or risk.

The problem of choosing p out of M possible waveforms be-
comes a high complexity combinatorial optimization problem. E.g.,
if there are M = 128 waveforms and we need to select p = 32 el-
ement subset, there are more than 1030 combinations of indices that
need to be checked. As a result, significant work has been focussed
on approximation methods based on convex relaxation which lead to
sparse solutions. Complexity penalties have also been used to find
sparse solutions to such problems [6]. One type of convex penalty is
the lasso, a shrinkage method which imposes an l1-norm constraint
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on the optimization problem [7]. By nature of the constraint, making
the weighting of the constraint larger causes some of the coefficients
to be zero thus giving rise to a suboptimal sparse solution to the sub-
set selection problem. Recent work advocates the use of l1-norm
constrained convex optimization problems to obtain spare represen-
tations [6]. Most of these problems deal with sparse regression and
are offline strategies where the solution to the problem is found based
on accumulated data.

In this paper, we consider the expected state prediction MSE as
a measure of performance and impose the problem of finding the op-
timal subset that minimizes this expected reward given the past mea-
surements (online strategy). We relax this combinatorially complex
problem into an optimization problem under l1-norm constraint and
propose a low complexity suboptimal solution whose performance
approaches that of the optimal subset selection. We then consider a
numerical example of this approach and provide simulation results
to compare the various solutions.

The organization of the paper is as follows: In Section 2, we
present the waveform selection problem. Section 3 proposes a sub-
optimal solution. In Section 4, we solve the problem for a specific
model. Section 5 addresses the computational complexity of the pro-
posed solution and Section 6 provides simulation results. We con-
clude this paper in Section 7.

2. PROBLEM FORMULATION

We consider the waveform selection problem for a hyper-spectral
radar system, where the radar can transmit and receive energy over
multiple channels simultaneously. We restrict the number of wave-
forms transmitted at any time to be a small subset of p out of M
available waveforms. Denote the state at time t as st and let the re-
ceived signals corresponding to a single transmit waveform φi be
denoted as yi

t, i = 1, . . . , M . We restrict our attention to single
stage policies, i.e., myopic policies that seek to maximize an ex-
pected reward conditioned on the immediate past.

Let {i1, . . . , ip} ∈ {1, . . . , M} denote the indices of the p dif-
ferent waveforms taken from a set of M (M ≥ p) waveforms. We
solve the optimal subset selection problem by maximizing the ex-
pected reduction in the variance of the optimal state estimator after
an action (choosing p out of M waveforms) is taken:

max
i1,...,ip

{
E

[‖st − E [st|yt−1] ‖2
∣∣ yt−1

] −
E

[∥∥∥∥st − E
[
st|yi1

t , . . . ,y
ip

t ,yt−1

]∥∥∥∥2
∣∣∣∣∣ yt−1

] }
. (1)

Since the first term is independent of {i1, . . . , ip}, the maximization
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in (1) can be equivalently expressed as

min
i1,...,ip

E
[‖st − ŝt(i1, . . . , ip)‖2

∣∣ yt−1

]
, (2)

where

ŝt(i1, . . . , ip) = E
[
st|yi1

t , . . . , y
ip

t ,yt−1

]
. (3)

The minimization in (2) requires one to evaluate (3) for all
(

M
p

)
pos-

sibilities of i1, . . . , ip. Two fundamental difficulties are encountered
in solving (2): computation of the conditional expectation (3); and
combinatorial minimization of (2). In the tracking examples consid-
ered here the computation of (3) is not difficult. Since the complex-
ity of problem is exponential in M (for fixed p/M ), we propose a
low complexity suboptimal solution for (2) whose performance ap-
proaches that of the optimal one.

3. PROPOSED SOLUTION

As an alternative to exhaustively searching over
(

M
p

)
possible sub-

sets we pose the following sparsity constrained prediction surrogate:

min
γ

E

[∥∥st −
∑

i

γigi(y
1
t , . . . , y

M
t ,yt−1)

∥∥2

∣∣∣∣∣yt−1

]
+ β‖γ‖l,

(4)

where β ≥ 0, ‖γ‖l, 0 ≤ l ≤ 1 is a sparseness inducing penalty
and {gi} is a set of base predictors of st and the linear combi-
nation of these predictors approximates the exact solution in (3).
When ‖γ‖l = ‖γ‖0 is the l0-norm, gi(y

1
t , . . . , y

M
t , yt−1) =

gi(y
i1
t , . . . ,y

ip

t ,yt−1) = ŝt in (3), i indexes over the
(

M
p

)
com-

binations of indices i1, . . . , ip, the solution of (4) yields the opti-
mal solution (2) for sufficiently large β. A surrogate investigated
by many [7, 8] for the l0-norm penalty is the l1-norm penalty ‖γ‖1

which will be adopted here. In the special case that gi depends only
on a single variable yi

t the regression in (4) is equivalent to using a
simple generalized additive model (GAM) [9]. We further assume
that gi(y

i
t) = E

[
st|yi

t,yt−1

]
. Thus the constrained prediction

problem can be formulated as

min
γ

E

[∥∥∥∥st −
M∑

i=1

γiE
[
st|yi

t,yt−1

]∥∥∥∥2
∣∣∣∣∣yt−1

]
+ β‖γ‖1, (5)

and β is chosen such that exactly p out of the M γi’s are nonzero.
This quadratic optimization in γ under l1-norm constraint is a con-
vex problem and can be evaluated in a straightforward fashion using
standard techniques, e.g., [7, 8, 10, 11]. We first find the range of β
that gives rise to a sparse solution with exactly p nonzero elements
and fix it to that value in the range which gives the minimum un-
constrained error. We take the indices of the p nonzero components
of γ corresponding to this β as the solution to the waveform subset
selection problem in (2).

4. NUMERICAL STUDY

To illustrate this approach, we consider the following problem: At
time t = 1, we assume without loss of generality that an arbitrary
waveform index η from {1, . . . , M} is chosen and waveform φη is

transmitted into the medium. The received signal at the first stage
can then be written as

y1 = L(φη)s1 + n1 = Lηs1 + n1, (6)

where L(·) is based on the channel model, n1 is receiver noise, and
s1 is the initial state. We consider the state update equation as a hid-
den Markov model (HMM), equivalent to a Gaussian mixture model,
defined as

st = A st−1 + It w1,t + (1 − It) w0,t, t = 2, 3, . . . , (7)

where {wi,t, i = 0, 1}t are independent Normal random vectors
with mean µi and covariance matrix Rwi

, A is a fixed matrix and
It are i.i.d Bernoulli random variables with success probability q.

Assume the initial state s1 is a Normal random vector with zero
mean and covariance matrix Rs. Receiver noises {nt} are i.i.d Nor-
mal with zero mean and covariance matrix Rn and {nt, {wi,t, i =
0, 1}, It, s1} are all independent. The model (7) captures the non-
Gaussian nature of the tracking problem where the state dynamics
switch at random between the hidden states It = 1 and It = 0.
The received signal at time t = 2 corresponding to transmission of
waveform φi can be written as

y
i
2 = Lis2 + n

i
2, i = 1, . . . , M. (8)

Our goal is to maximize expected reduction in the variance of the
state estimator after sending the waveforms {φik

}p
k=1

and receiving

the backscatter y
i1
2 , . . . ,y

ip

2 , i.e.,

min
i1,...,ip

E

[∥∥∥∥s2 − E
[
s2|yi1

2 , . . . ,y
ip

2 ,y1

]∥∥∥∥2
∣∣∣∣∣ y1

]
. (9)

For the proposed GAM prediction problem under l1-norm constraint,
we need to minimize

E

[∥∥∥∥s2 −
M∑

i=1

γiE
[
s2|yi

2,y1

]∥∥∥∥2
∣∣∣∣∣y1

]
+ β‖γ‖1 (10)

with respect to γ and use the nonzero indices obtained through this
method as our solution to the subset selection problem.

Given I2 = k ∈ {0, 1}, the random vectors x2, yi
2 and y1 are

jointly Gaussian. Let y = [yi1
2

T
, . . . ,y

ip

2

T
,y1

T ]T . Then the joint
distribution can be written as(

s2

y

)
I2=k

= N
[(

µk

µ
y,k

)
,

(
Rs2,k Rs2,k,y

RH
s2,k,y Ry,k

)]
, (11)

where

µ
y,k =

[[
LH

i1 , . . . ,LH
ip

]H
µk

0

]
, (12)

Rs2,k,y =
[
(Rs2,k)

[
L

H
i1 , . . . ,LH

ip

]
,ARsL

H
η

]
, (13)

Rs2,k = Rwk
+ ARsA

H . (14)

If y1 is a N × 1 vector, then Ry is a N(p + 1) × N(p + 1) matrix
whose mn-th block is given by

Ry,km,n = LimRs2,kL
H
in

+ Rnδ(m − n), 1 ≤ m, n ≤ p

Ry,km,p+1
= R

H
y,kp+1,m

= LimARsL
H
η , 1 ≤ m ≤ p.

Ry,kp+1,p+1
= LηRsL

H
η + Rn.
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Since the random vectors s2,y
i1
2 , . . . , y

ip

2 ,y1 are jointly Gaussian,
the conditional mean of s2 given y and I2 = k can be evaluated as

E
[
s2|yi1

2 , . . . ,y
ip

2 ,y1, I2 = k
]

= µk + Rs2,k,yR
−1

y,k

(
y − µ

y,k

)
,

and the conditional mean estimator is

E
[
s2|yi1

2 , . . . ,y
ip

2 ,y1

]
=

1∑
k=0

E
[
s2|yi1

2 , . . . ,y
ip

2 ,y1, I2 = k
]

P
(

I2 = k|yi1
2 , . . . ,y

ip

2 ,y1

)
, (15)

where the conditional probability of I2 can be found using Bayes
formula:

Πk(y) = P ( I2 = k|y)

= P
(

I2 = k|yi1
2 , . . . ,y

ip

2 ,y1

)
=

f(y| I2 = k)P(I2 = k)∑
i f(y| I2 = i)P(I2 = i)

, (16)

where f(y| I2 = k)

=
|Ry,k|−0.5

(
√

2π)N/2
exp

(
−0.5(y − µ

y,k)H
R

−1

y,k(y − µ
y,k)

)
and P(I2 = 1) = q. Thus equation (15) can be rewritten as

E [s2|y] =
1∑

k=0

Πk(y)
(
µk + Rs2,k,yR

−1

y,k

(
y − µ

y,k

))
.(17)

The MSE criterion in (9) can now be evaluated by substituting for
the conditional expectation from (17). For the suboptimal criterion
in (10), we need to find E

[
s2|yi

2,y1

]
which is a specific case of

(17) with p = 1, i.e., y = [yi
2, y1]. It is worthwhile to note that even

in the case of q = 0 or 1 for which the target dynamics are linear
Gaussian, the solution to (10) is suboptimal, i.e., it is not equivalent
to the conditional expectation (3). This is because the predictor does
not take into account the spatial correlation between the received
signals y1

2, . . . ,y
M
2 . However, if the received signals are scalars,

then the l1-norm constrained solution to (10) can be shown to be the
optimal solution for the Gaussian case.

5. COMPUTATIONAL COMPLEXITY

The estimator given in (17) is in closed-form and hence the major
complexity in finding the optimal solution is in its evaluation for all(

M
p

)
possible combinations of waveforms. Instead we use the sub-

optimal solution given by (10) to find the best p waveforms to be
transmitted at the second stage. We use the recently proposed LARS
algorithm (Least Angle Regression) [10] to solve for (10) which re-
quires only the same order of magnitude of computational effort as
the ordinary least squares solution. The algorithm uses the fact that
the solution to (10) is piecewise linear in β and hence one can obtain
the exact solution in min(p,M − p) steps either by doing a forward
selection or backward elimination procedure.

6. SIMULATION RESULTS

Based on the formulation in Section 4, we perform a simulation for
the simple case of M = 5 different waveforms. This will allow us
to quantify the gap between the optimal solution (3) and the solution
to the approximation (10). We assume a radar receiver array with
N = 25 antenna elements so that the received signals y1,y2 are
25 × 1 vectors. The state vector is assumed to be a Ns × 1 vector
with Ns = 10. The correlation matrices Rn,Rw0

,Rw1
,Rs are

identity matrices. The mean vectors µ0 and µ1 are 10 × 1 vectors
consisting of all zeros and all 0.1 respectively. The Bernoulli ran-
dom variables It takes the value 1 with probability q = 0.4. We
assumed the channel model to be linear and selected the waveforms
{φi}M

i=1 at random over 25 dimensional unit sphere. These wave-
forms are unit norm and have cross correlation less than 0.1. We
simulated the performance of the optimal subset selector along with
the l1-norm constrained convex problem under this setting. The per-
formance criteria considered in the simulations is shown in Table 1.

We first present the MSE of the l1-norm penalized solution found
from (5) (solid line, GAM with l1) as a function of the sparseness
regularization parameter β in Fig. 1. For each value of β, we also
show the corresponding l0-norm of optimal γ (on top of the solid
line) in the figure. The MSE is a increasing function of β and as
explained earlier, we notice that increasing β induces more sparse-
ness in the solution. When β is large, the MSE converges to the
variance of the state parameter. We also plot the MSE of the optimal
subset selection solution (dashed line) corresponding to the l0-norm
obtained through the l1-norm constrained solution. We see a clear
difference in performance between the two techniques. This is be-
cause of two main reasons: The primary reason is the fact that we
find a suboptimal solution by assuming the GAM estimator of the
form in (5) rather than the optimal estimator given in (3). The other
reason is due to the fact that we solve the minimization problem sub-
ject to an l1-norm constraint rather than an l0-norm constraint.
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Fig. 1. Minimum MSE for optimal subset selection (dotted and
dashed-dotted line) and l1-norm constrained solution (solid line)with
respect to β. ‖γ‖0, corresponding to the number of nonzero com-
ponents in the optimal solution of γ for constrained optimization is
shown adjacent to the solid line as a function of β.
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Approach Form of predictor Constr.

Subset Selection E
[
s2|yi1

2 , . . . ,y
ip

2 , y1

]
-

GAM + l0
∑

i γiE
[
s2|yi

2,y1

] ‖γ‖0

GAM + l1
∑

i γiE
[
s2|yi

2,y1

] ‖γ‖1

Optimal predictor E
[
s2|y1

2, . . . ,y
M
2 ,y1

]
-

Proposed Solution Use optimal from GAM + l1 ‖γ‖1

in subset selection

Table 1. Form of predictors

In Fig. 2, we plot the performance of state estimators mentioned
in Table 1. We observe that the performance of GAM under l0-
norm constraint is indeed found to be optimal for ‖γ‖0 = 1 case
and clearly suboptimal for other cases due to the restrictive additive
model. Finally we see that our proposed solution has a significant
performance gain as compared to the simple l1-norm constrained
minimization and approaches the optimal subset selection perfor-
mance. This suggests that we can considerably reduce the computa-
tional complexity of the problem and at the same time achieve nearly
optimal performance using such a design approach.

0 1 2 3 4 5
0

2

4

6

8

10

12

||γ||
0

M
SE

Optimal subset selection
Proposed Approach
Optimal GAM with L

1
Optimal GAM with L

0

Fig. 2. Minimum MSE for the optimal subset selection problem (cir-
cle), optimal GAM with l1 constraint (diamond), optimal GAM with
l0 constraint (cross) and the proposed approach (star) as a function
of ‖γ‖0.

7. CONCLUSIONS

We considered the problem of optimal waveform selection. We op-
timally choose a small subset of waveforms that minimizes the state
prediction MSE given the past observations. We observe that the

optimal subset selection is a combinatorially complex optimization
problem and hence infeasible. We proposed a suboptimal solution
through convex relaxation which achieves near optimal performance.
We considered a particular model and compared the performance of
the various strategies through simulation. This problem is a natu-
ral extension to the problem of optimal energy allocation between
two stages of transmission under energy constraints using sequential
design strategies [12, 13]. One extension is to solve this problem
simultaneously for both optimal waveform selection and optimal en-
ergy allocation.
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