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ABSTRACT

Minimum measure sets (MMSs) summarize the information of a
(single-class) dataset. In many situations, they can be preferred to
estimated probability density functions (pdfs): they are strongly re-
lated to pdf level sets while being much easier to estimate in large
dimensions.

The main contribution of this paper is a theoretical connection
between MMSs and one class Support Vector Machines. This justi-
fies the use of one-class SVMs in the following applications: novelty
detection (we give explicit convergence rate) and change detection.

1. INTRODUCTION

Signal/Image processing decision algorithms often rely on the esti-
mation of probability density functions (pdfs). Typical examples are
in speech recognition, signal classification, or pattern (image) recog-
nition. This may be performed by nonparametric techniques, such as
Parzen windows, or by semi parametric techniques, such as mixtures
of Gaussian. All these approaches, however, suffer from the curse of
dimensionality problem, that is, the estimation becomes harder when
the dimension of the space the pdf is defined on increases.

In most Signal/Image processing applications, however, solu-
tions can be found without estimating a pdf. A typical example is
that of data classification, where recent algorithms such as support
vector machines (SVM) [1] are constructed without estimating den-
sities. Another example is that of kernel change detection [2], where
abrupt changes are detected without estimating a pdf as an interme-
diate step. In this paper, we propose an overview of an alternate
method which can be used instead of pdf estimation in many prob-
lems. This approach proposes to use instead of the pdf a minimum
measure set of this pdf. As will be shown below, minimum measure
set (MMS) estimation is much easier than pdf estimation (especially
in high dimension), and captures enough information about the data
to enable accurate decisions.

Briefly, given a training set of vectors {x1, . . . , xn} in a space
X , MMS estimation consists of finding a subset C of X such that
1) C has minimum “volume” under some measure and 2) assuming
the xi’s are distributed according to some probability measure P ,
and given some λ ∈ [0; 1], the subset C verifies P (C) = λ (see
Section 2 for a rigorous definition).

This problem has been addressed in many ways in previous works.
The most prominent strategies include that of Devroye and Wise [3],
one class support vector machines [4], excess mass approaches and
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probability density functions (pdf) plug-in approaches. In this pa-
per, we propose a unified view, where the MMS is sought in a class
of subsets whose boundaries belong to a kernel space (e.g., a Repro-
ducing Kernel Hilbert Space – RKHS). More precisely, the boundary
of such a subset C is {x ∈ X|f(x) = 0} where f(·) : X �→ R

belongs to some function space with kernel k(·, ·). The main con-
tributions are i) a formal connection between one-class SVM and
excess mass approaches (Section 3); ii) the derivation of a conver-
gence rate for the probability of false alarms in one-class SVM nov-
elty detection1 (Section 5). Section 2 below recalls some fundamen-
tals about MMSs, Section 4 points out some convergence study for
the Lebesgue measure of the symmetric difference, and Section 6
proposes conclusions and future work directions.

2. MINIMUM MEASURE SETS

Let P a probability measure and Q a measure over the measurable
space

`
X ,B(X )

´
such that Q dominates P . Let C ⊂ B(X ) a collec-

tion of Q-measurable subsets of X . We assume that Q is known; P

is supposedly unknown but a learning set x1, . . . , xn
i.i.d.
∼ P is avail-

able. Let λ ∈ [0; 1]; we define the minimum Q-measure set of P in
C as the set C(λ) such that:(

P (C(λ)) = λ
Q(C(λ)) = arg inf

C∈C
{Q(C); P (C) = λ} (1)

In the following, we assume that P admits a density p with respect
to the measure Q2. Then, there exists pλ ∈ [0; supx∈X |p(x)|] such
that MMS in Eq. (1) can also be defined as:

C(λ) = {x ∈ X : p(x) ≥ pλ} (2)

where pλ depends on both λ and Q. Eq. (1) and Eq. (2) are equiv-
alent definitions of C(λ), which implies that one can use either the
parametrization that uses either λ or pλ. However, many reasons
make the definition in Eq. (1) more suitable. In particular: 1) as the
learning set size n tends to infinity, λ is asymptotically the ratio of
learning samples that actually fall in C(λ); 2) Any decision problem
involving the comparison of two or more MMSs requires that they
are defined for some fixed λ and not for fixed pλ (the comparison
does not have any sense otherwise); 3) λ has a direct interpretation
in terms of distribution quantiles. This is needed when dealing with

1A similar rate can be obtained for one-class SVM based change detec-
tion.

2This assumption is aimed at making the presentation clearer, but it is not
formally needed for most of the material presented in this paper to be true.

III ­ 6681­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006



λ

C(λ)

��

�
�
�

�
�

Fig. 1: When considering only one pdf, defining the MMS with the
density level pλ or its P -measure λ is equivalent, and (1 − λ) is the
P -measure of the tails of the pdf (left). However, the comparison of
two pdfs p1 and p2 has to be made for constant λ and not constant
pλ (right).

applications such as outliers detection or change detection. In the
following, though, we use the definition in Eq. (2) because it enables
clear and direct algorithms derivations. We will show that, in fine,
the definition actually used in algorithms is that of Eq (1). In prac-
tice, the probability measure P is unknown, and an estimate, denotedbCn(λ), is learned from {x1, . . . , xn}. Here, we consider a nonpara-
metric estimate and it has to: 1) be (strongly) consistent; 2) achieve
relatively fast rates of convergence; 3) lead to a practicable and com-
putationally cheap algorithm. Moreover, as many applications of
MMSs involve decision, we also require that similarities between
MMSs estimates can be calculated in a computationally tractable
way, though X may have large dimension. These requirements are
somehow hard to meet jointly. Methods found in the statistics liter-
ature either fail at providing a computationally tractable, practicable
algorithm, at having good rates of convergence or at being suited to
high dimensional data. In the next Section, we show that a RKHS
together with excess mass methods make such good solutions possi-
ble.

3. A (REPRODUCING) KERNEL-BASED
NONPARAMETRIC ESTIMATION PROCEDURE

The main result in [5] is that a fast rate of convergence for estimating
MMSs can be achieved if C is a poor class of sets, such as VC or
Glivenko-Cantelli. However, no practicable algorithm is provided.
On the other hand, so-called RKHS methods [6, 7] provide a mean
of exploring efficiently such classes of sets, through a representer
theorem. We first focus on the excess mass approach, then we embed
it into a RKHS.

3.1. Excess mass

The set C(λ) is the set in C that maximizes the excess mass m(C)
of a set C , defined as:

m(C) = P (C) − pλQ(C) =

Z
C

(p(x) − pλ)dQ(x) (3)

Indeed, for this set, the part of the integration set C in Eq. (3) for
which p(x)−pλ is negative is reduced to its minimum, thus ensuring
that p(x) ≥ pλ for x ∈ C(λ), see Eq. (2). For practical estimation,
we define an empirical counterpart mn(C) to the true m(C) and let:

bCn(λ) = arg max
C∈C

mn(C) (4)

The simplest empirical counterpart for m(C) surely is (where 1 xi∈C

= 1 whenever xi ∈ C and 1 xi∈C = 0 otherwise and the term

1
n

Pn
i=1 1 xi∈C is called the empirical measure ):

mn(C) =
1

n

nX
i=1

1 xi∈C − pλQn(C) (5)

Finding the MMS C(λ) comes down to solving one of the following
equivalent problems:

max
C∈C

mn(C) ⇔ min
C∈C

`
pλQn(C) − 1

n

Pn
i=1 1 {xi∈C}

´
⇔ min

C∈C

`
pλQn(C) + 1

n

Pn
i=1 1 {xi /∈C}

´ (6)

This problem is, however, ill-posed and cannot be solved easily in
practice. The following section shows that RKHS approaches help
solve the problem.

3.2. The kernel approach and connection with 1-class Support
Vector Machine

The problem in Eq. (6) can be solved using kernels. Such meth-
ods have already proven useful in many machine learning problems,
mostly because they yield linear interpretation of nonlinear prob-
lems, and because they enable easy evaluation of functions com-
plexity (via the induced norm). Let H be a RKHS with reproduc-
ing kernel3 k(·, ·). We now define C as the collection of sets {x ∈
X ; f(x) ≥ ρ} for f ∈ H and ρ ≥ 0, and we use the shorthand
{f ≥ ρ} to denote the set {x ∈ X such that f(x) ≥ ρ}. In prac-
tice, we need to estimate f and ρ from the learning set {x1, . . . , xn}

and we denote such estimates bfn and bρn. In addition to propose
a choice for C, we also modify the criterion in Eq. (6) by chang-
ing 1 {xi /∈C} into (ρn − fn(xi)) 1 {fn(xi)<ρn}(this is the standard
hinge loss which is used in, e.g., SVMs). Similar smoothing also
arises in kernel density estimation (see, e.g., [8, Chapter 9]). The
modified excess mass problem writes:

max
C∈C

mn(C) ⇔ min
fn∈H

1
n

Pn
i=1 (ρn − fn(xi)) 1 {fn(xi)<ρn}

+pλQn({fn ≥ ρn})
(7)

The r.h.s. of Eq. (7) appears to be a classical regularization criterion,
where the term 1

n

Pn
i=1 (ρn − fn(xi)) 1 {fn(xi)<ρn} is a hinge loss

and the term pλQn({fn ≥ ρn}) is a regularizer, independent of the
learning set. The regularization parameter is the density level pλ.
We now state our main result.

Proposition 3.1 (Choice of the measure Q). For any RKHS H,
there exists a measure Q such that minimizing the induced norm
‖fn‖

2
H in the RKHS H implies minimizing the regularizer in (7), i.e.

1-class SVMs implement an excess mass approach.

Proof (sketch): Let T : L2(X ) → H = Im(S) ⊂ R
X , g �→ f =

Tg and H be dense in L2(H). We have (see, e.g., [7]): 〈f, f〉H =
〈Tg, Tg〉H = 〈g, g〉L2(x). Let 1H denote the function in H which
is the closest to the unit constant function, in the sense of the L2(X )
norm. Then,

q(·) = (T−1
1 H)2(·) (8)

is such that the optimum of 1-class SVM criterion is the minimizer of
Eq. (7), as, with Cn(λ) = {x : fn(x) ≥ ρn}, we have: Qn(Cn(λ))
∝
R

Cn(λ)
(T−1fn)2(x)dx. Hence, Qn(Cn(λ)) �

R
X

(T−1fn)2(x)dx

= 〈T−1fn, T−1fn〉L2(X ) = ‖fn‖
2
H, which proves Proposition 3.1.

3We do not discuss in here the conditions on k needed to ensure the con-
vergence of bfn.
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Alternate proof consists in: Let µ = 1{fn>ρn} and assume the exis-
tence of Γt(.) ∈ L2(µ) such that k(t, τ) =< Γt(.), Γτ (.) >L2(µ).
With P : L2(µ) → H (built as a bijection, gn = P−1fn and
q(x) = gn(x)2µ(x), one has Q(fn > ρn) = ‖gn‖

2
L2(µ) = ‖fn‖

2
H ,

which yields the equivalence (with stronger assumptions). One can
easily check in both cases that Q = limn→∞ Qn is a measure. �

We recognize the standard one-class SVM in Eq. (7), as it writes:

min
fn∈H

1

n

nX
i=1

(ρn − fn(xi)) 1 {fn<ρ} + pλ‖fn‖
2
H (9)

Proposition 3.1 yields interesting interpretations: 1) the control over
the richness of classes of functions obtained by minimizing ‖ · ‖2

H

expresses explicitly as the minimization of a certain measure of sub-
sets of X ; 2) With H dense in L2(X ), the fn’s are approximations
for the indicator function of C(λ) and the oscillating effect and the
rationale for choosing ρ shortly lower than the density level in [4]
are explained.

3.3. Parameter tuning

Proposition 3.1 shows that one-class SVMs are special instances of
excess mass based kernel MMS estimation. More importantly, it
also yields a representer theorem for excess mass estimation: the
minimum measure set bCn(λ) = {x ∈ X ; bfn(x) ≥ ρn} is such that:

bfn(·) =

nX
i=1

αik(xi, ·) with α1, . . . , αn in R (10)

The hard issue in the above setting is the tuning of pλ (see Section 2),
because it may not be easily expressed as a practicable function of
λ, and because it is a level of the density p, defined wrt the measure
Q. The ν-SVM solution [4] consists of a re-writing the criterion in
Eq. (9):

min
fn∈H

 
1

n

nX
i=1

(ρn − fn(xi)) 1 {fn(xi)<ρn} +
1

2
‖fn‖

2
H − νρn

!
(11)

This modification enables to come back to the initial MMS estima-
tion settings, Eq. (1). It can easily be shown that #{xi : fn(xi) <
ρn} ≤ νn ≤ #{xi : fn(xi) ≤ ρn}. Moreover, since almost surely
with {x1, . . . , xn}, , limn→∞ P ({fn = ρn}) = 0, we have that
ν

a.s.
= limn→∞ P ({f ≤ ρ}). Hence, λ = 1 − ν which settles the

connexion and shows the practicability of the approach.
In this Section, the interpretation of one-class SVMs as an ex-

cess mass approach in RKHS for estimating MMS is established for-
mally. This connection enables the direct use of, e.g., the pioneering
work by Polonik [5] in order to derive theoretical studies of one-
class SVMs convergence properties. Moreover, it justifies the use
of one-class SVMs in many applications such as for novelty detec-
tion and change detection in Section 5. Under the assumption of a
Gaussian kernel, a rate of convergence of 1-class SVM is obtained
in forthcoming [9], which yields similar conclusions in the proposed
framework.

4. CONVERGENCE ISSUES

For the sake of clarity, we state the rate of convergence obtained
in [9] for the special case of a Gaussian kernel (See also work by
Steinwart and coauthors). Let k(·, ·) be a Gaussian kernel with width
parameter σn (which decay rate is chosen specifically), let d denote
the dimension of X , and suppose that for some 0 ≤ β ≤ 1, c1 > 0
and for δ ≥ 0, the pdf p satisfies:

sup
‖x−x′‖≤δ

|p(x) − p(x′)| ≤ c1δ
β (12)

Then, for any ε ≥ 0:

‖f − bfn‖
2
L2(X ) = OP

 „
1

n

« 2β
4β+(2+β)d

−ε
!

(13)

In the following, we need to express this rate of convergence in terms
of the sets bCn(λ) and C(λ) rather than the functions cfn and f . We
measure this rate with the symmetric difference:

d∆( bCn(λ)∆C(λ)) = Leb
“ bCn(λ)\C(λ)

”
+ Leb

“
C(λ)\ bCn(λ)

”
(14)

The first term in the right hand side writes (a similar reasoning holds
for the second term):

Leb( bCn(λ)\C(λ)) = Leb({ bfn ≥ ρn}\{f ≥ ρ})

≤ Leb

„j
|f(x) − ρ| ≤ c2n

− 2β
4β+(2+β)d

ff«
with c2 > 0

(15)

Then, under Polonik’s smoothness assumption:

∃γ such that sup
λ

Leb({x ∈ X ; |f(x) − ρ| ≤ η}) � ηγ (16)

which yields:

Leb( bCn(λ)\C(λ)) � n
− 2γβ

4β+(2+β)d (17)

In particular, if the Lebesgue density of P is regular (γ = 1), then:

d∆( bCn(λ∆C(λ))) = OP

„
n
− 2β

4β+(2+β)d

«
(18)

In the following, we use the rate obtained in Eq. (18) to justify the
use of 1-class SVM for novelty detection. Similar development can
be derived for change detection but will be omitted here due to the
lack of space.

5. APPLICATIONS AND EXPERIMENTS

5.1. Novelty detection

Novelty detection consists of deciding whether new sample x is
novel or not, based on the learning set {x1, . . . , xn}, which yields
the following hypothesis test, for a given λ:j

Hypothesis H0 : Sample x is not novel, i.e. x ∈ bCn(λ);

Hypothesis H1 : Sample x is novel, i.e. x /∈ bCn(λ).
(19)

with H0 the null hypothesis. This test has proved to yield solid per-
formance in applications (industrial [10], audio [11]). A key quan-
tity in the analysis of nonparametric detection tests is the probability
of false alarms, denoted pfa, and its empirical counterpart denoted
pfa

n :

pfa
n = P

n
x /∈ bCn(λ)|x ∈ C(λ), x1, . . . , xn

o
(20)

We study the asymptotic behavior of the probability of false alarm,
and are interested in deriving a central limit theorem-like result for
the convergence of pfa

n to 0.

Proposition 5.1 Under the assumptions of Section 4:

P{|pfa
n − En[pfa

n ]| ≥ ε} � exp(−ε2n
− 2β

4β+(2+β)d ) (21)
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Proof (sketch): pfa
n verifies the bounded difference property, as:

bn ≡ supx′

i
∈X |pfa

n (x1, . . . , xn)

− pfa
n (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)|

≤ 2 supx∈X |p(x)|d∆( bCn(λ)∆C(λ)) � n
− 2β

4β+(2+β)d

(22)
McDiarmid inequality then yields the deviation bound of Eq. (21).�

The proof techniques employed are similar to those in [12] where
similar convergence rates are derived for bCn(λ = 1) a nonparamet-
ric estimate for the support of P made of union of balls centered on
the xi’s (i = 1, . . . , n). In our case, however, rates are faster and ob-
tained for any level λ. Up to our knowledge, the above convergence
rate is the first result of this type for kernel-based novelty detection.

5.2. Change detection

The application we address in this Section is change detection, which
framework is similar to that of Section 5.1. Here, however, we test
T samples instead of one. More formally, let x1, . . . , xn

i.i.d.
∼ P0 and

xn+1, . . . , xn+T
i.i.d.
∼ P1. We do not consider the classic detection

problem of deciding whether P0 = P1 or not; instead, we concen-
trate on the related detection problem based on the comparison, for
a given λ, of C0(λ) and C1(λ), as in [3, Section 4]. We therefore
implement the following hypothesis test, for threshold t:j

Hypothesis H0 : d∆( bC0,n(λ), bC1,T (λ)) < t;

Hypothesis H1 : d∆( bC0,n(λ), bC1,T (λ)) ≥ t.
(23)

with H0 the null hypothesis and where bC0,n(λ) (resp. bC1,T (λ)) is
the estimate of the Q-MMS with P0-measure (resp. P1-measure) λ
based on the learning set {x1, . . . , xn} (resp. {xn+1, . . . , xn+T }).

The above procedure enables change detection via the tuning of
λ. The test replaces the comparison of the unknown measures P0

and P1 with a comparison of MMSs. A slightly modified version of
this test was successfully applied to music segmentation of complex
audio signals, see [2].

In the remainder of this Section, we compare the performance of
kernel-based MMS (1-class SVM) change detection to a particle fil-
ter based Generalized Likelihood Ratio (GLR) approach. The time-
series we consider is defined by the popular toy nonlinear model:

xi = 1
2
xi−1 + a1

xi−1

1+x2
i−1

+ 8 cos(1.2(i − 1)) + ωi−1

yi = a2x
2
i + vi−1

(24)

with ωi ∼ N (0, 0.1) and vi ∼ N (0, 1). Both approaches are used
to detect changes in the time-series for 500 realizations of ωi and
vi; in the first 250 signals, there is a change at time instant T in the
model parameters, with a1 jumping from 25 to 12.5, and a2 from
0.05 to 0.1035. The other 250 signals are kept with a1 = 25 and
a2 = 0.05.

The two approaches are tuned as follows. The MMS method
uses settings described in see [2] where the space X derives from
the Gaussian window (length 51 points) Spectrogram of {yi}, for
i = 1, 2, . . .. 51. Each xi is sub-image made of 25 consecutive
spectrogram columns; the learning sets sizes are n = T = 10. The
ν 1-class SVM parameters are ν = 0.5 and σ = 25 for kernel
width. The particle filter GLR is given the correct model and tuned
as in [13]. Figure 2 plots the ROC curves (true alarms vs. false
alarms). Both methods have good performance, as confirmed by the
estimated change time instants histograms.

0

100

T

0

100

T

Fig. 2: ROC curves (left) and histograms of estimated change time
instants for MMS-based approach (solid, and top right) and particle
filtering based GLR (dash, and bottom right). MMS-based approach
and the particle filter GLR both perform very accurately.

6. CONCLUSION AND PERSPECTIVES
In this paper, we recall fundamentals concerning MMSs and present
results including estimation, connection with 1-class SVMs, the-
oretical justification for MMS novelty detection. The application
to change detection, though implementing a suboptimal hypothesis
test, yields better performance on a highly nonlinear time series than
a particle filter GLR using the correct model. Short-term perspec-
tives include the application of MMSs to the problem of defining a
kernel between finite sets of vectors as well as the improvement of
first good results obtained for change detection in music signals.
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