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ABSTRACT

We propose a new recursive EM (REM) algorithm that can

be used whenever the complete-data model associated to the

observed data belongs to an exponential family of distribu-

tions. The main characteristic of our approach is to use a

stochastic approximation algorithm to approximate the con-

ditional expectation of the complete-data sufficient statistic

rather than the unknown parameter itself. Compared to ex-

isting approaches, the new algorithm requires no analytical

gradient or Hessian computation, it deals with parameter con-

straints straightforwardly and the resulting estimate can be

shown to be Fisher-efficient in general settings. This approach

is illustrated on the classic direction of arrival (DOA) model.

1. INTRODUCTION

The EM algorithm [1] is a very popular tool for maximum-

likelihood (or maximum a posteriori) estimation. The com-

mon strand to problems where this approach is applicable is

a notion of incomplete-data, which includes the conventional

sense of missing data but is much broader than that. The EM

algorithm demonstrates its strength in situations where some

hypothetical experiment yields “complete” data that are re-

lated to the parameters more conveniently than the measure-

ments are. The EM algorithm has several appealing prop-

erties. Because it relies on complete-data computations, it

is generally simple to implement; at each iteration, the E-

step only involves computing conditional expectation given

the observed date; the M-step only involves complete-data

maximum-likelihood estimation, which is most often in sim-

ple closed-form. Moreover, it is numerically stable, in the

sense that it each iteration of the algorithm increases the like-

lihood (of the observed data).

For large sample sizes however, the EM algorithm be-

comes time and memory consuming since each iteration in-

volves all the available observations. To overcome this limi-

tation, it is of interest to consider recursive implementations

of the EM algorithm. By “recursive” we mean that each ob-

servation is only used once and that the required computations

can be carried out sequentially. Whereas the standard EM al-

gorithm is suitable only for batch or off-line processing, re-

cursive versions of the algorithm are suitable for on-line pro-

cessing.

Although several recursive EM implementations have been

proposed in the literature [2, 3, 4, 5], we feel that most of them

are more related to the principle known as Fisher scoring in

the statistical literature than to the EM algorithm directly –

see (7) and discussion below. These algorithms involve com-

puting the gradient of the log-likelihood –which is readily

available due to Fisher formula [1]– but also some form of

approximation of the observed-data Fisher information ma-

trix. With those gradient-based algorithms, it is hard to deal

with the parameter constraints in some models and setting the

scale of the gradient step-size usually is a non-trivial task.

In this communication, we propose a new recursive EM

algorithm that is clearly more reminiscent of the EM algo-

rithm and, in many cases, easier to implement than previously

mentioned algorithms, while alleviating some of the problems

discussed above. This algorithm may be used whenever the

complete-data model belongs to a (curved) exponential fam-

ily. Section 2 covers the algorithm in the general setting of

independent observations and we next consider consider its

application to DOA estimation in Section 3.

2. RECURSIVE EM (REM)

Let {Y1, · · · , YN} be a sequence of i.i.d. random variables

whose common probability density function (pdf), with re-

spect to some measure µ on R
ny , is denoted by π(y) and

{g(y;ϑ);ϑ ∈ Θ} a parametric family of pdfs. The maximum

likelihood estimator (MLE) is given by

ϑ̂ML(Y1, · · · , YN ) = arg max
ϑ∈Θ

N−1
N∑

n=1

log g(Yn;ϑ) . (1)

Under standard regularity assumptions, ϑ̂(Y1, · · · , YN ) con-

verges, as N goes to infinity, to the value

ϑ� = arg min
ϑ∈Θ

K (π ‖g(·, ϑ) ) ,

where K (p ‖q ) = −
∫

log q(y)
p(y) p(y)µ(dy) is the Kullback-

Leibler divergence between p and q.

In the standard EM approach, we introduce a family of

pdfs {f(y, z;ϑ) , ϑ ∈ Θ},

g(y;ϑ) =

∫
f(y, z;ϑ)λ(dz) ,
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where λ denotes a measure on R
nz . The pdfs f(·;ϑ) and

g(·;ϑ) are, respectively, referred to as the complete-data and

observed (or incomplete) likelihood and z is interpreted as un-

observable or missing data. The EM algorithm is an iterative

optimization algorithm to compute the MLE. Each iteration

consists of two successive steps, known as the E-step and the

M-step. In the E-step, one evaluates the conditional expecta-

tion

Q(ϑ;ϑp) =
1

N

N∑
n=1

E [ log f(Yn, Zn;ϑ) |Yn;ϑp] , (2)

where ϑp is the current fit for the parameter ϑ. In the M-

step, the value of ϑ maximizing Q(ϑ;ϑp) is found, yielding

the new parameter estimate ϑp+1. The essence of the EM

algorithm is that increasing Q(ϑ;ϑp) forces an increase of

the likelihood [1].

In the sequel, we assume that the complete-data model

belongs to a curved exponential family:

log f(y, z;ϑ) = h(y, z) − ψ(ϑ) + 〈S(y, z), φ(ϑ)〉 , (3)

where the symbol 〈·, ·〉 denotes the scalar product. The EM

re-estimation functional Q(ϑ;ϑ′) may then be expressed as

Q(ϑ;ϑ′) = L

(
N−1

N∑
i=1

s̄(Yi;ϑ
′);ϑ

)
, (4)

where L(s;ϑ) = −ψ(ϑ) + 〈s, φ(ϑ)〉 and

s̄(y;ϑ)
def
= E [S(Y,Z) |Y = y;ϑ] . (5)

The k-th iteration of the EM algorithm updates ϑk according

to

ϑk+1 = θ̄

(
N−1

N∑
n=1

s̄(Yn;ϑk)

)
, (6)

where θ̄ (s) = arg maxϑ∈Θ L(s;ϑ).
In a recursive framework, the data are run through once

sequentially and the parameter update must be computable

from ϑn−1 and Yn, where ϑn denotes the current value of the

parameter estimate after n observations. To our best knowl-

edge, the first recursive parameter estimation procedure for

incomplete data model has been proposed by [2]. It is given

by:

ϑ̂n = ϑ̂n−1 + γnI−1
f (ϑ̂n−1)U(Yn; ϑ̂n−1) , (7)

where {γn} is a non-increasing sequence of positive numbers,

U(y;ϑ) = ∇ϑ log g(y;ϑ) is the score function and If (ϑ) is

the Fisher information matrix (FIM) associated to a complete

observation. This recursion is recognized as a stochastic ap-

proximation procedure on ϑ. It is often referred to in the lit-

erature under the name of recursive EM, but we find that this

term is somewhat misleading because, contrary to the EM,

it is a gradient algorithm. This algorithm may be seen as a

recursive implementation of the gradient EM algorithm pre-

sented in [6]. The works presented in [4, 5] build on the idea

of [2], whereas [3] is actually closer to the present contribu-

tion, although limited to a specific model.

Our proposal consists in replacing the E-step by a recur-

sive stochastic approximation step, while keeping the maxi-

mization step unchanged, that is

ŝn = ŝn−1 + γn(s̄(Yn; ϑ̂n−1) − ŝn−1) , ϑ̂n = θ̄ (ŝn) ,
(8)

where γn is a sequence of decreasing step-sizes. This new

algorithm is fully analyzed in [7] where it is shown that it

is Fisher-efficient in rather general settings (not assuming in

particular that π = g(·;ϑ�) for some parameter value ϑ�)

for choices of the step-sizes such that
∑

∞

n=1 γn = ∞ and∑
∞

n=1 γ2
n < ∞ (typically, take γn = n−α with 0.5 < α ≤ 1).

More precisely – see Theorem 5 of [7], we may show that

under suitable assumptions and with step-sizes γn ≡ n−α,

with 0.5 < α < 1, γ
−1/2
n (ϑ̂n − ϑ�) converges in distribution

to a zero mean Gaussian distribution with covariance matrix

Σ(ϑ�) solution of the Lyapunov equation involving the FIM

of a complete observation and the covariance of the observed

data Fisher score. When π belongs to the parametric family

of distributions under consideration; that is π = g(·, ϑ�), the

solution of this Lyapunov equation is the FIM associated to

the observations.

Iπ(ϑ�)
def
= −∇2

θ K (gϑ� ‖gϑ )|ϑ=ϑ� , (9)

otherwise it has a more complicated expression (see [7] for

details).

This first result is not entirely satisfying as it shows that

the rate of convergence is γ
−1/2
n rather than n−1/2, that is,

n−α/2 with the choice discussed above, which can be much

slower. In addition, this result also suggests that using α close

to 1, i.e., fast decreasing step-sizes, is the best option to max-

imize the convergence rate. In practice, one should however

remember that this result pertains to the large sample behav-

ior of the estimates and, in most models, taking α close to 1

results in the algorithm converging too slowly. A better solu-

tion proposed by [8] and further generalized in [9] consists in

using step-sizes with slower decay (typically α closer to 0.5

than to 1) and to perform averaging; ϑ is then estimated by

ϑ̃n = (n − n0)
−1

n∑
k=n0+1

ϑ̂n ,

where n0 is a lag after which averaging effectively starts. It is

proved in [7] that the averaged estimator ϑ̃n is indeed Fisher-

efficient, that is, it converges at rate n−1/2 to a centered Gaus-

sian distribution with covariance matrix equal to the inverse

of the Fisher information matrix defined in (9). The practical

implications of these results will be further illustrated below

(in Section 4) for the DOA model.
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3. APPLICATION TO DOA ESTIMATION

Consider an array with M sensors receiving signals from K
far-field narrow-band sources with M > K. The measured

array output is a linear combination of the incoming wave-

forms, corrupted by additive Gaussian noise. The vector of

array outputs at time index n is represented as

Yn = A(θ)Xn + Bn =

K∑
k=1

a(θk)Xn,k + Bn ,

where θ = (θ1, . . . , θK) represents the unknown DOA pa-

rameters, a(θ) is the complex array response to a unit wave-

form with incoming angle θ, Xn = (Xn,1, . . . , Xn,K) is the

emitted signal, and Bn the additive noise. We assume that the

array is linear and uniform, which implies that, for any an-

gle θ, aH(θ)a(θ) = C. We further assume that the vector of

signal waveforms Xn is a stationary white complex Gaussian

noise and that the K sources are independent with powers

α = (α1, . . . , αK). The additive noise Bn is also a station-

ary white complex Gaussian noise assumed for simplicity to

be spatially white with power υ. The parameter ϑ thus en-

compasses both the DOA parameters θ, the powers α, and

the noise variance υ. The likelihood of one observation is

g(y;ϑ) = N (0,Γ(ϑ)), with

Γ(ϑ) = A(θ)P(α)AH(θ) + υIM , (10)

where N denotes the complex multivariate Gaussian distribu-

tion, P(α) = diag(α1, · · · , αK), the superscript H denotes

the conjugate-transpose, and IM is the M -dimensional iden-

tity matrix.

We may represent the array response Yn as a superposi-

tion of K independent complex Gaussian vectors Zn,k with

zero mean and covariance

Γk(ϑ) = αka(θk)aH(θk) + υkIM , (11)

where
∑K

k=1 υk = υ; taking, for instance, υk = υ/K. In the

EM terminology, the vectors Zn,1, . . . , Zn,K form the com-

plete data. The joint pdf of the complete data is given by

log(f(zn,1, · · · , zn,K ;ϑ)) = −M log π

− ψ(ϑ) +
K∑

k=1

trace [S(zn,k)φk(ϑ)] , (12)

where

ψ(ϑ) = M

K∑
k=1

log(υ/K) +

K∑
k=1

log(1 + CKυ−1αk) ,

S(z) = zzH ,

φk(ϑ) = −Kυ−1
IM +

K2υ−2αk

1 + CKυ−1αk
a(θk)aH(θk) .

Thus, in the DOA model the complete-data sufficient statistics

correspond to the K empirical covariance matrices S(zn,1),
. . . , S(zn,K).

We first turn to the E-step of the EM algorithm. Fol-

lowing (5), we need to compute conditional expectation of

S(Zn,k)

s̄k(Yn;ϑ)
def
= E

[
Zn,kZH

n,k

∣∣ Yn;ϑ
]

, (13)

for k = 1, . . . , K. It is easy to derive that

s̄k(Y ;ϑ) = Γk(ϑ) − Γk(ϑ)Γ−1(ϑ)Γk
H(ϑ)

+ Γk(ϑ)Γ−1(ϑ)
(
Y Y H

)
Γ
−1(ϑ)Γk

H(ϑ) , (14)

where Γ(ϑ) and Γk(ϑ) are respectively given by (10) and (11).

The M-step then consists in maximizing L(s1, . . . , sK ;ϑ)
defined by (4). To do so, we note that it is first necessary

to maximize separately with respect to θk only the function

a
H(θk)ska(θk) to obtain

mk
def
= max

θ
a

H(θ)ska(θ) ,

θ̄k(sk) = arg max
θ

a
H(θ)ska(θ) , (15)

using one dimensional line searches. Now, the maximization

with respect to the (K + 1) positive parameters α1, · · · , αK ,

and υ yields

ῡ(s1, . . . , sK) =
1

(M − 1)

K∑
k=1

(trace(sk) − mk/C) (16)

and

ᾱk(s1, . . . , sK) =
mk − Cῡ(s1, . . . , sK)/K

C2
(17)

Following (8), the REM algorithm then consists in approxi-

mating the K statistics ŝn,k by

ŝn,k = ŝn−1,k + γn

(
s̄k(Yn; ϑ̂n−1) − ŝn−1,k

)
,

where s̄k(Yn; ϑ̂n−1) is computed according to (14). Then,

ϑ̂n is obtained applying (15), (16), and (17), as in the (non-

recursive) EM algorithm.

4. NUMERICAL RESULTS

In this section, we study the performance of the proposed al-

gorithm in the scenario considered in [10]: three sources with

equal power are located at θ
� = [24◦, 28◦, 45◦]; the array

consists of M = 15 sensors with equal inter-spacing of half

wavelength; the signal-to-noise ratio for each path is kept at

0 dB. In the results below, we use the same initial parameter

guess ϑ̂1 as in [10].
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The sequence of step-sizes is chosen as γn = n−0.6. Note

that although, we could obviously select different sequences

that behaves similarly for large n, one of the merit of the pro-

posed algorithm is that the absolute scale of γn is in some

sense fixed by the fact that γn = 1 amounts to taking ŝn =
s̄(Yn; ϑ̂n−1), i.e, not performing any smoothing on the suffi-

cient statistic.

The performance is estimated by averaging the squared

error ‖θ̂N − θtrue‖
2 over one hundred independent simulated

trajectories of array outputs. For reference, we also plot the

Cramer-Rao lower bound (CRB) for the DOA model [11].
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Fig. 1. MSE of REM with and without averaging as a func-

tion of the number of samples, compared to the CRB (MSE

estimated from 100 independent runs); nmin = 0.
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Fig. 2. Same figure with nmin = 500.

On figures 1 and 2, we first observe that in the asymp-

totic regime (sample sizes larger than 2,000), the curve that

pertains to the REM algorithm without averaging (solid bold

curve) doesn’t have the same slope as the CRB, confirming

that the estimate converges at a rate which is lower than n−1/2.

On figure 1, averaging (dotted curve) appears to yield bet-

ter results only for larger sample sizes but is much worse for

small to intermediate sample sizes. This is due to the fact that

for small sample sizes, the estimation error is dominated by

the bias caused by the mismatch between the initial value and

ϑ�. In this regime, averaging only worsens the problem and it

is recommend to start the averaging process only when the es-

timate gets reasonably close to the true value. Figure 2 (with

n0 = 500) shows that in this case, averaging is very beneficial

and that it does reach the CRB for larger sample sizes.
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