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ABSTRACT

Algorithms for estimating the noise parameters of a signal
sampled with random timing errors and embedded in addi-
tive noise are proposed. Both the timing errors and the ad-
ditive noise are assumed to be Gaussian and independent
and identically distributed. Computationally efficient es-
timators, derived by maximising an approximation to the
likelihood, are proposed. Comparisons with the Cramér-
Rao bound demonstrate the performance of the proposed
algorithms for a range of parameter values.

1. INTRODUCTION

We consider a continuous-time signal s(t), t ∈ R of known
functional form which is to be sampled with nominal sam-
pling period T . The sampling procedure is subject to ran-
dom jitter such that it produces the sequence λk(uk) =
s(kT+uk), k = 1, . . . , n where uk are iid Gaussian random
variables with zero mean and variance τ2. In the presence
of additive noise, the signal model becomes

xk = λk(uk) + wk, k = 1, . . . , n, (1)

where wk are iid Gaussian random variables with zero mean
and variance σ2. The goal is to estimate τ2 and σ2 from
observationsx = (x1, . . . , xn)′. This problem is of interest,
for example, when using high-speed sampling oscilloscopes
to test input signals for compliance with relevant standards
[1, 4]. In this application an accurate characterisation of the
uncertainties in the measuring device are essential.

Asymptotically unbiased and efficient estimates can be
obtained by maximising the likelihood p(x|τ2, σ2) [5]. The
popularity of the maximum likelihood estimator (MLE) is
due to the primarily empirical evidence which suggests that
these desirable asymptotic properties are often satisfied with
sufficient closeness for reasonable sample sizes. Computa-
tion of the MLEs for the current problem is complicated by
the intractability of the likelihood. One possibility is to use
the expectation-maximisation (EM) algorithm [3] to com-
pute the MLEs. However, the obvious formulation in which

x is the observed data and u = (u1, . . . , un) is the unob-
served data does not prevent the appearance of intractable
integrals. It is possible that an alternative formulation may
remove the problem. This topic will not be pursued here.

The search for suitable estimators of the variances is for-
mulated in terms of finding an accurate approximation of
the likelihood. This approach is motivated by the intuition
that maximising a sufficiently accurate approximation of the
likelihood will produce estimators with properties close to
those of the MLEs. The first estimator uses a Gaussian mix-
ture likelihood approximation with the approximation be-
coming exact as the number of components in the mixture
tends to infinity. A second class of estimators approximates
the likelihood by a single Gaussian with mean and variance
dependent on the unknown parameters. Estimators in this
second class sacrifice fidelity in the likelihood approxima-
tion for reduced computational expense.

A similar approach was taken in [6] where approximate
MLEs were derived under a small jitter assumption. In
the framework adopted here, these estimators belong to the
second class of estimators and are obtained by linearising
the signal model (1) about the expected value of the jitter.
A more accurate single Gaussian likelihood approximation
based on Gaussian quadrature is proposed here. The perfor-
mances of all estimators are compared with the Cramér-Rao
bound (CRB) to assess the effects of the various approxima-
tions for a range of actual parameter values.

The paper is organised as follows. Approximate ML
estimators are developed in Sections 2 and 3. The CRB is
derived in Section 4 and a performance comparison is given
in Section 5. Conclusions are given in Section 6.

2. GAUSSIAN MIXTURE APPROXIMATION

The likelihood of the observed data vector x given the pa-
rameter θ = (τ2, σ2)′ may be written as

p(x|θ) =

n∏
k=1

∫
N(xk; λk(uk), σ2)N(uk; 0, τ2) duk,

(2)
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where

N(z; λ, κ2) = exp{−(z − λ)2/(2κ2)}/
√

2πκ2. (3)

Analytic expressions for the integrals of (2) can be found
only if the underlying signal s is an affine function of time,
i.e., s(t) = at + b where a and b are real-valued con-
stants. For cases of more general interest the likelihood can-
not be evaluated exactly. In such cases a simple scheme suit-
able for approximating integrals of the form (2) is Gaussian
quadrature. The m-point Gaussian quadrature rule leads to
the following approximation for the likelihood of the kth
observation, k = 1, . . . , n, [2]:

p(xk|θ) ≈
m∑

i=1

ρiN(xk; λk(υi), σ
2), (4)

where υi =
√

2τξi, i = 1, . . . , m with ξi the ith root of the
mth order Hermite polynomial Hm and

ρi = 2m−1m!/{mHm−1(ξi)}2. (5)

Hermite polynomials can be generated using, for m = 1, 2, . . . ,

Hm(u) = 2uHm−1(u) − 2(m − 1)Hm−2(u), (6)

with H−1(u) = 0 and H0(u) = 1. Approximate MLEs are
obtained as

θ̂ = arg max
θ

n∑
k=1

log

[
m∑

i=1

ρiN(xk; λk(υi), σ
2)

]
. (7)

Newton’s method initialised with a rough initial estimate
can be used to solve (7) in a computationally efficient man-
ner. The details are omitted for the sake of brevity.

For integrals of the form∫
f(z)N(z; µ, κ2) dz, (8)

m-point Gaussian quadrature is exact if f is a polynomial
of order less than 2m. For a given order m the accuracy
of (4) then depends on how well N(x; λk(

√
2τu), σ2) is

approximated by a polynomial in u of order 2m − 1. In
particular, the error in the approximation is bounded by [2]

max
−∞<ξ<∞

m!

2m(2m)!

d2m N(x; λk(
√

2τu), σ2)

du2m

∣∣∣∣∣
u=ξ

, (9)

provided that λk is 2m-times differentiable. It can be shown
that, for fixed m and a given λk, the upper bound (9) will
tend to increase as σ2 decreases. Convergence of the ap-
proximation (4) as m → ∞ follows from [2, Eq. (3.7.5)].

3. GAUSSIAN LIKELIHOOD APPROXIMATIONS

In this section the likelihood of the kth sample, k = 1, . . . , n,
is approximated by a single Gaussian of the form

p(xk|θ) ≈ N(xk; x̂k(θ), νk(θ)). (10)

Approximate ML estimates of the variances τ2 and σ2 are
obtained as

θ̂ = argmin
θ

n∑
k=1

[
log{νk(θ)} +

{xk − x̂k(θ)}2

νk(θ)

]
. (11)

Newton’s method initialised with a rough initial estimate is
used solve (11).

3.1. Linearisation

Under the assumption that the jitter variance τ2 is small, the
sampled signal can be approximated by an affine function
of the jitter noise. In particular, truncating the Taylor series
after the first-order term yields

λk(uk) ≈ sk + ukgk, (12)

where sk = s(kT ) and gk = ds(t)/dt|t=kT . The signal
sk obtained from jitter-free sampling is subtracted from the
observations to obtain the residuals εk = xk − sk, k =
1, . . . , n. The likelihood of the kth observation can then be
written as

p(xk|θ) ≈
∫

N(εk; ukgk, σ2)N(uk; 0, τ2) duk. (13)

It can be shown that

N(εk; ukgk, σ2)N(uk; 0, τ2)

= N(εk; 0, νk(θ))N

(
uk;

τ2gkεk

νk(θ)
,

σ2τ2

νk(θ)

)
, (14)

where
νk(θ) = σ2 + τ2g2

k. (15)

Note that the first term of the RHS of (14) is independent
of the jitter noise uk. Therefore substituting (14) into (13)
leads to a likelihood approximation of the form (10) with
x̂k(θ) = sk and νk(θ) as given in (15). Although formu-
lated differently here this is the approach taken in [6].

3.2. Numerical approximation

The Gaussian approximation to the likelihood (10) is com-
pletely specified by the quantities x̂k(θ) and νk(θ). Intu-
ition suggests that these quantities should be as close as
possible to the mean and variance of the observations condi-
tioned on the parameter θ. A more accurate approximation
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to these quantities than that given by linearisation can be ob-
tained by numerical integration. Specifically, the expected
value of the kth sample conditional on θ is

E (xk|θ) =

∫
λk(uk)N(uk; 0, τk) duk. (16)

The integral (16) can be approximated efficiently and ac-
curately using Gaussian quadrature. The m-point Gaussian
quadrature approximation to the mean is

x̂k(θ) =

m∑
i=1

ρiλk(
√

2τξi), (17)

where the weights ρ1, . . . , ρm are given by (5) and the sam-
ple point ξi, i = 1, . . . , m is the ith root of the mth order
Hermite polynomial Hm. The conditional variance is ap-
proximated by

νk(θ) = σ2 +

m∑
i=1

ρi{λk(
√

2τξi) − x̂k(θ)}2. (18)

Identifying (16) with (8), it can be seen that the accuracy
of (17) depends on how well λk(u) = s(kT + u) is ap-
proximated by a polynomial of order 2m − 1. For signals
s which are reasonably smooth this will permit the use of
a small value of m thus resulting in a computationally ef-
ficient scheme. Convergence of (17) as m → ∞ follows
from [2, Eq. (3.7.5)].

4. DERIVATION OF THE CRAMÉR-RAO BOUND

The Cramér-Rao bound (CRB) provides a lower bound on
the variance of any unbiased estimator. It is given by the
diagonal elements of the inverse of the Fisher information
matrix (FIM), J = −E∇θ∇′

θ
log{p(x|θ)} where ∇θ =

(∂τ2, ∂σ2)′. The FIM can be evaluated as follows.
The likelihood is written as

p(x|θ) =

n∏
k=1

∫
e(xk, uk; θ) duk, (19)

where e(xk, uk; θ) = N(xk; λk(uk), σ2)N(uk; 0, τ2). De-
noting the ith element of θ as θi, it is straightforward to
show that

∂2 log{p(x|θ)}

θiθj

=
nX

k=1

2
664

∂2p(xk|θ)

∂θi∂θj

p(xk|θ)
−

∂p(xk|θ)

∂θi

∂p(xk|θ)

∂θj

p(xk|θ)2

3
775 .

Since the derivative can be taken inside the integral, the
required first-order partial derivatives are

∂e(xk, uk; θ)

∂σ2
=

e(xk, uk; θ)

2σ2

(
εk(uk)2

σ2
− 1

)
, (20)

∂e(xk, uk; θ)

∂τ2
=

e(xk, uk; θ)

2τ2

(
u2

k

τ2
− 1

)
, (21)

where εk(uk) = xk − λk(uk). The required second-order
partial derivatives can be found as

∂2e(xk, uk; θ)

∂σ2∂σ2
=

e(xk, uk; θ)

4σ4

„
εk(uk)4

σ4
− 6

εk(uk)2

σ2
+ 3

«
,

∂2e(xk, uk; θ)

∂τ 2∂τ 2
=

e(xk, uk; θ)

4τ 4

„
u4

k

τ 4
− 6

u2

k

τ 2
+ 3

«
,

∂2e(xk, uk; θ)

∂σ2∂τ 2
=

e(xk, uk; θ)

4τ 2σ2

„
u2

k

τ 2
− 1

« „
εk(uk)2

σ2
− 1

«
.

The expected value of the second-order partial derivative
with respect to σ2 can be found as

E

∂2p(xk|θ)

∂σ2∂σ2

p(xk|θ)
=

1

4σ4

Z
N(uk; 0, τ

2)

„
3
σ4

σ4
− 6

σ2

σ2
+ 3

«
duk

= 0.

In a similar manner it can be shown that

E
∂2p(xk|θ)/∂σ2∂τ2

p(xk|θ)
= 0, E

∂2p(xk|θ)/∂τ2∂τ2

p(xk|θ)
= 0.

The remaining expectations, involving products of partial
derivatives of the likelihood, are of the form (8) and can
be approximated with arbitrary accuracy using a Gaussian
quadrature rule with a sufficient number of points. The de-
tails are omitted for the sake of brevity.

5. SIMULATION RESULTS

In this section the performances of the algorithms of Sec-
tions 2 and 3 are analysed using Monte Carlo simulations.
The acronyms GM-MLE, G-MLE(L) and G-MLE(Q) will
be used for the estimators of Sections 2, 3.1 and 3.2, re-
spectively.

The continuous-time signal of interest is a sinusoid s(t) =
a cos(ωt + ψ) which is to be sampled with nominal sam-
pling period T = 1s. The sinusoidal parameters are a = 1,
ω = 1 and ψ = 0.5. The sample size is n = 4096. The
noise parameters τ2 and σ2 will be varied between simu-
lation runs with 500 realisations used for each parameter
set. Jitter noise variances of τ2 = 0.01, 0.05 are considered
with additive noise variances such that the ratio S = a2/σ2

varies between 10dB and 30dB. Two measures of perfor-
mance, defined as follows for a scalar parameter θ, are used:

• the normalised bias, b(θ) = (E(θ) − θ)/
√

var(θ),

• the relative efficiency, η(θ) =
√

var(θ)/CRB(θ).

Ideally, the normalised bias is zero and the relative effi-
ciency is one. The performance analysis will assess the
degree to which the various estimators depart from these
ideal outcomes. Although the relative efficiency is lower-
bounded by one for unbiased estimators this is not neces-
sarily the case for biased estimators.
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The normalised bias and relative efficiency for estima-
tors of τ2 are plotted against the ratio S in Figures 1 and 2
for τ2 = 0.01 and τ2 = 0.05, respectively. The G-MLE(Q)
is implemented with m = 3 while the GM-MLE is imple-
mented with m = 15, 30 and 60. Initialisation is done via
a coarse grid search. For the given scenario, the G-MLE(Q)
performs best. The normalised bias is close to zero and rel-
ative efficiency is close to one for all parameter values con-
sidered. The GM-MLE is the next best estimator although
large values of m are required for accurate estimation for
small σ2. This becomes increasingly true as τ2 increases.
The superiority of the G-MLE(Q) over the GM-MLE is sur-
prising given the potentially greater accuracy of the Gaus-
sian mixture approximation compared to the Gaussian ap-
proximation. A likely explanation is that the likelihood (2)
is more difficult to approximate than the conditional mean
(16). The worst estimator is G-MLE(L) as it has signifi-
cant bias even for the smaller value of τ2 when σ2 is small.
Similar results are obtained for the estimators of σ2.
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Figure 1: (a) Normalised bias and (b) relative efficiency of
τ̂2 plotted against S = a2/σ2 (in dB) for the GM-MLE with
m = 15 (solid), m = 30 (dashed) and m = 60 (dash-dot),
the G-MLE(Q) (dotted) and the G-MLE(L) (–o–). The jitter
noise variance τ2 = 0.01.

6. CONCLUSIONS

The problem of estimating the noise parameters of a sig-
nal sampled with random timing errors and embedded in
additive noise was considered. Since the likelihood is in-
tractable, estimators based on maximising an approximation
to the likelihood were proposed. Three likelihood approx-
imations were considered; (1) a Gaussian mixture approx-
imation, (2) a Gaussian approximation with moments cal-
culated by linearisation and (3) a Gaussian approximation
with moments calculated by numerical integration. Estima-
tor 3 demonstrated the best performance in a series of Monte
Carlo simulations. This performance is obtained with a
computational expense about twice that of estimator 2 but
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Figure 2: (a) Normalised bias and (b) relative efficiency of
τ̂2 plotted against S = a2/σ2 (in dB) for the GM-MLE with
m = 15 (solid), m = 30 (dashed) and m = 60 (dash-dot),
the G-MLE(Q) (dotted) and the G-MLE(L) (–o–). The jitter
noise variance τ2 = 0.05.

about half that of estimator 1. AlthoughGaussian distributed
timing errors were considered here the proposed estimators
are not limited to this case. In particular estimators 1 and 3
used Gaussian quadrature rules which can be easily adapted
to a number of timing error distributions.
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