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ABSTRACT

We consider the design of quantizers for the distributed estimation of a de-
terministic parameter, when the fusion center uses a Maximum-Likelihood
estimator. We define a new metric of performance, which is to minimize
the maximum ratio between the Fisher Information of the unquantized and
quantized observations. Since the estimator is M-L, the criterion is equiv-
alent to the minimizing the maximum asymptotic relative efficiency due to
quantization. We propose an algorithm to obtain the quantizer that optimizes
the metric and prove its convergence. Through simulations, we illustrate that
the quantizer performance is close to the best possible Fisher Information as
number of quantization bits increases. Furthermore, under certain conditions,
the quantizer structure is found to belong to the class of score-function quan-
tizers, which maximize Fisher Information for a given value of the parameter.

1. INTRODUCTION

1.1. Motivation

Distributed estimation refers to the statistical inference problemwhere

observations from several distributed nodes are collected at a com-

mon fusion center which estimates the underlying parameter. Such

an estimation system finds numerous applications especially in the

context of sensor networks where the estimated parameter is indica-

tive of the phenomenon being sensed. Unlike classical point estima-

tion, here it is impractical to assume that the fusion center has di-

rect access to the observed measurements. The data transmission to

the fusion center is severely restricted by communication and energy

constraints and nodes are allowed to transmit only a compressed ver-

sion of the data. In this work, we focus on the optimal quantization

of the observations to maximize estimation performance.

Consider a system as shown in Figure 1. Each node measures

a random observation Xi independent and identically distributed

under a deterministic scalar parameter θ. The nodes then transmit
quantized versions of the observations, {γi(Xi)}, to the fusion cen-
ter. We assume that the quantizers are identical, i.e., γi(·) = γ(·).
This assumption is motivated by the i.i.d distributions of observa-

tions and the possibility of using Type-Based Multiple Access[1] for

energy efficient communication to the fusion center.

The fusion center uses the received data {γ(Xi)} to make an

estimate θ̂ of the true parameter. It is well known that the mean
squared error (MSE) of any unbiased estimate is lower bounded

by the inverse of Fisher Information (FI). Furthermore, when the

quantized observations are distributed according to some probability

mass function qθ , and aMaximum-Likelihood estimator based on qθ
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Fig. 1. Distributed Estimation System

is implemented, the MSE of θ̂ asymptotically achieves this bound.
The best possible quantizer for an M-L estimator would therefore

maximize FI for every value of θ. However, since the FI varies with
θ, a single quantizer cannot be optimal for all θ.
We know that, for every θ, the Fisher Information Iθ of the quan-

tized observations is less than the FI Jθ of the unquantized {Xi}.
Therefore, our goal is to design a quantizer that minimizes the max-

imum ratio between these quantities over θ. In other words, we wish
to design γ∗ = arg minγ maxθ

Jθ

Iθ
. This criterion is also equivalent

to minimizing the maximum Asymptotic Relative Efficiency (ARE)

between consistent estimators based on quantized and unquantized

observations. Furthermore, for source distributions with constant Jθ ,

such a quantizer requires the least sample size for a given asymptotic

error variance amongst all deterministic quantizers.

1.2. Main Contributions

In this work, we define a criterion for performance that minimizes

the maximum ARE between M-L estimators based on quantized and

unquantized measurements under a deterministic parameter. We pro-

pose an iterative algorithm to obtain a quantizer that optimizes the

minimax criterion and prove its convergence. We then describe a

class of quantizers called Score Function Quantizers which can be
used to obtain the maximum achievable Fisher Information for a

given parameter θ. Through numerical simulations, we compare the
performance of the minimax quantizer and optimal Score-Function

quantizers. We also provide insights into the possible structure of

these quantizers under some conditions on source distribution.

1.3. Related Work

There has been extensive literature on quantization for distributed

estimation. When the parameter is random, Lam and Reibman[2]

developed an iterative quantizer that maximizes the Bayesian Fisher

Information. Gubner[3] and Zhang and Li[4] developed quantizers

that minimize the MSE of a random parameter for certain restricted
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classes of estimators. For a deterministic parameter, Luo[5] opti-

mized the number of quantization bits for a uniform quantizer to

minimize MSE. When the observation is a deterministic parameter

in additive noise, Ribiero and Giannakis[6] showed that the Fisher

Information is maximized when the threshold of a 1−bit quantizer
is equal to the parameter θ. In an earlier work[7], we had shown
the optimality of Score-Function Quantizers in maximizing Fisher
Information for a particular θ. Data compression for distributed esti-
mation has also been considered from an information theoretic per-

spective [8], where nodes encode long sequences of observations.

Our paper is organized as follows. The basic system model and

the minimax criterion are discussed in Section 2. The iterative al-

gorithm and the convergence are explained in Section 3. Score-

Function Quantizers and optimality are briefly discussed in Section

3.1. Numerical results and quantizer structure are presented in Sec-

tion 4. Conclusions and future extensions are given in Section 5.

2. MINIMAX CRITERION

Consider the setup as shown in Figure 1. Let {Pθ; θ ∈ Θ ⊆ R} rep-
resent the family of distributions for the random observationXi ∈ X

indexed by the deterministic scalar parameter θ, where Pθ denotes a

probability measure on the space X with σ−field G. A determinis-
tic quantizer can be defined as a G−measurable mapping γ : X �→
{1, · · · , D}. In this work, we shall restrict our study to the set of
deterministic quantizers, represented by Γ. Since we assume nodes
use identical quantizers, the variables γ(Xi) are distributed i.i.d ac-
cording to a probability mass function qθ specified by

qθ = {qθ(1), · · · , qθ(D)},

qθ(k) = Pθ(γ(Xi) = k).

Let θ̂ be an unbiased estimate of θ based on the quantized obser-
vations γ(Xi). If the family of probability mass functions {qθ; θ ∈
Θ} satisfies certain regularity conditions (see [9],pp. 169), then

Varθ[θ̂] ≥
1

nIθ

, (1)

where Iθ =

DX
i=1

qθ(i)

„
d

dθ
log qθ(i)

«2

. (2)

The quantity 1/nIθ is the Cramer-Rao Bound (CRB) for the p.m.f

qθ . Furthermore, if θ̂ is the M-L estimate of θ based on qθ , then

θ̂ ∼ N(θ, 1/nIθ), as n → ∞ under more regularity conditions.
A quantizer that maximizes Iθ over all Γ is optimal for that θ

when coupled with the M-L estimator. However, as mentioned ear-

lier, it is not possible to design one quantizer that maximizes Iθ for

all θ. Hence, we consider the minimax criterion:

γ∗ = arg min
γ

max
θ

Jθ

Iθ

, (3)

where Jθ =

Z
X

pθ(x)

„
d log pθ(x)

dθ

«2

. (4)

Let the subscripts q and uq denote variables for the quantized and
unquantized estimators respectively. Using (1),

γ∗ = arg min
γ

max
θ

CRBq

CRBuq

(5)

Since we use a M-L estimator, (5) implies that for a fixed sample

size, the quantizer γ∗ would make the maximum ratio of the asymp-

totic error variances as close to 1 as possible.

An important interpretation of the criterion would be in terms

of the Asymptotic Relative Efficiency (ARE)[9]. ARE between two

maximum likelihood estimates can be defined as the ratio of sample

sizes required by the two estimators to achieve the same asymptotic

error variance. From (1), we see that for a given asymptotic variance,

the criterion can be written as

γ∗ = arg min
γ

max
θ

nq

nuq

For some source distributions pθ , the Fisher Information of unquan-

tized variable, Jθ can be independent of θ. For example, if Xi =
θ + Ni, where Ni has infinite support, it can be proven analytically

that Jθ is a constant. Under such circumstances, the minimax crite-

rion simplifies to:

γ∗ = arg min
γ

max
θ

nq

In other words, the minimax quantizer requires the least sample size

amongst all deterministic quantizers.

3. ITERATIVE ALGORITHM

In this section, we propose the algorithm for iteratively obtaining

the quantizer that achieves the minimax criterion. The basic idea

behind the algorithm is this: We start with an arbitrary initial guess

of the quantizer γ. We then iteratively improve the quantizer by
finding the optimal partition for each x ∈ X given the others. The

algorithm converges because the performance metric improves with

every iteration.

Let Sθ(x), Sθ(i) represent the score-function of the unquantized
and quantized observations respectively. i.e.,

Sθ(x) =
d log pθ(x)

dθ
, x ∈ X (6)

Sθ(i) =
d log qθ(i)

dθ
, i ∈ {1, · · · , D} (7)

The score-function is a measure of sensitivity of the likelihood func-

tion and the definition is subject to conditions similar to those for

CRB. Let the partitions in X in iteration j be represented by T (j). If

the quantizer at the iteration j is represented by γ(j), then

T (j)(i) = {x : γ(j)(x) = i}

The formal statement of the algorithm is as follows:

1. Initialization: DivideX intoD arbitrary non-overlapping par-
titions represented by {T (0)(i)}. Evaluate the score-function
and Fisher Information as

S
(0)
θ (i) =

d

dθ
log q

(0)
θ (i) =

d

dθ
log Pr{x ∈ T (0)(i)}

I
(0)
θ =

DX
i=1

1

q
(0)
θ (i)

 
dq

(0)
θ (i)

dθ

!2

2. Iteration n + 1: Let θ∗ = arg maxθ
Jθ

I
(n)
θ

.

For every x ∈ T (n)(j), let

k∗ = arg min
k

{Mk
n(x), k = 1, .., D} (8)

Mk
n(x) =

(
maxθ

pθ(x)
Jθ

(Sθ(x) − S
(n)
θ (k))2, k �= j

pθ∗ (x)

Jθ∗

(Sθ∗(x) − S
(n)
θ∗ (k))2, k = j

(9)

Then x ∈ T (n+1)(k).
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3. Termination: Choose ε close to zero. At each iteration, eval-
uate I

(n)
θ . If maxθ |I

(n)
θ − I

(n−1)
θ | < ε, then the algorithm

terminates. In other words, when the change in Fisher Infor-

mation is very close to zero, we terminate the algorithm.

Theorem 1 At the nth iteration, let R(n) = maxθ Jθ/I
(n)
θ . Then

R(n+1) ≤ R(n), ∀n. In the absence of local minima, the algorithm
converges to min maxθ Jθ/Iθ .

Proof: Refer Appendix

Since, the algorithm iteratively assigns x to the D bins, it is
computationally intensive. However, for a given parameter set, it is

possible to run the algorithm offline and provide only the bin infor-

mation to the nodes to perform the quantization. Although, the quan-

tizer does not have a particular structure, depending on the source

distribution, it may be possible to express the quantizer as thresh-

olds on a function of x. This is discussed in detail in Section 4.3.

3.1. Score Function Quantizers

In this section, we discuss a class of quantizers known as Score
Function Quantizerswhich can be used to maximize Fisher Informa-
tion Iθ for a given θ. In [10], the class of Likelihood ratio quantiz-
ers was shown to optimize performance metrics in distributed detec-

tion like Chernoff Information (Bayesian detection) and Kullback-

Leibler distance (Neyman-Pearson Detection). The equivalent of the

likelihood ratio in parameter estimation is the score function, which

has been defined in (6).

We define the threshold set T as the set of all vectors t =
(t1, ..., tD−1) ∈ R

D−1, satisfying −∞ ≤ t1 ≤ · · · ≤ tD−1 ≤ ∞.
For any t ∈ T , the associated intervals I1, ..., ID are defined by

L1 = [0, t1], L2 = [t1, t2], · · · , LD = [tD−1,∞].

Definition 1 : A quantizer γ ∈ Γ is a monotone Score-function
quantizer (SFQ) with threshold vector t ∈ T , if γ(x) = d ⇐⇒
Sθ(x) ∈ Ld, ∀x. We say that a quantizer is a SFQ is there exists
a permutation mapping π : {1, · · · , D} �→ {1, · · · , D} such that
π ◦ γ is a monotone SFQ (◦ is the composition operator).

It has been shown in [7] that the Fisher Information Iθ for a

given θ is maximized by a score-function quantizer. Furthermore,
the optimal SFQ that maximizes Iθ can be obtained by using the

Lloyd-Max iterative algorithm. It is to be noted that since the score-

function depends on θ, this can be used to maximize the FI only at
that value of θ and hence is not a practical quantizer. It however
serves as a bound for the Fisher Information for any D−bit quan-
tizer at that value of θ. The Fisher Information function obtained
by evaluating the best SFQ at each θ in the parameter set is a useful
benchmark for performance comparison. In the proceeding section,

we shall compare the performance of the minimax quantizer to the

maximum achievable Fisher Information obtained using SFQs.

4. NUMERICAL RESULTS

4.1. Parameter in AWGN

Here, the parameter is assumed to be an element of the bounded set

[θmin, θmax] ⊂ R. The source is distributed as Xi ∼ N(0, σ2).
It is easy to see that the Fisher Information of unquantized Xi is

a constant Jθ = σ2. Therefore, optimizing the minimax criterion

corresponds to minimizing the sample size for a given asymptotic

error variance.
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Fig. 2. Parameter in AWGN: θ ∈ [0, 5], σ2 = 1

Figure 2 plots the Fisher information of the minimax quantizer

versus θ and compares it to the bound obtained by evaluating the FI
of the score-function quantizer at every θ. As can be seen from the
figure, the minimax quantizer for D = 2 bits achieves the bound at
θ = θmin+θmax

2
. As the number of quantization bits increase, the

performance of the quantizer gets closer to the SFQ bound.

4.2. Gaussian Fading

In this example, the source is a faded version of the parameter,X =
Hθ, H ∼ N(0, σ2). The parameter is again assumed to be an ele-
ment of an interval [θmin, θmax]. In this case, the Fisher Information
of the unquantized variable is given by 2

σ2θ2 . It is no longer inde-

pendent of the parameter.
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Fig. 3. Parameter in Gaussian Fading: θ ∈ [1, 4], σ2 = 1

Figure 3 plots the Fisher Information and Asymptotic Relative

Efficiency (ARE) of the minimax quantizer for the Gaussian faded

distribution for D = 2, 4 bits. Similar to the previous example, the
minimax quantizer forD = 2 achieves the SFQ bound at a particular
value of θ. It is also interesting to note that the quantizer ARE at θmin

and θmax are close to each other.

The observations that the minimax quantizer forD = 2 achieves
the SFQ bound for a given value of θ suggest that those quantizers
are score-function quantizers. We shall now look at the partitions in

X space for the examples and draw some insights about the possible

structure of the minimax quantizer. As will be seen in the following

section, although the quantizers for D = 4 are not optimal for any
particular θ, they also belong to the class of SFQs.

4.3. Partitions in Observation space

In this section, we illustrate the nature of the quantization bins in the

X domain for the examples and provide some insights on the general

nature of the partitions. Figure 4 shows the partitions in the X space

for the two examples, whenD = 4.
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Fig. 4. Partitions in X domain

As can be seen from the figures, the partitions for the AWGN ex-

ample are the outcome of thresholds on the observation x. In other
words, each bin corresponds to an interval x ∈ [x1, x2]. The parti-
tions for the fading example are symmetric around zero and hence

can be written in the form x2 ∈ [y1, y2]. This may be attributed
to the monotone likelihood behaviour of the score-function in these

examples. The score-function for the AWGN and Gaussian Fading

examples are given by:

Sθ(x) = x − θ (AWGN) (10)

Sθ(x) = x2

θ3 − 1
θ
(Fading) (11)

As can be seen from the above equations, for any value of θ, the
score-function is a monotone increasing function of x and x2 for

the AWGN and Gaussian Fading examples respectively. Therefore,

any score-function quantizer corresponds to a set of thresholds on x
and x2 respectively. For a general distribution, if the score-function

is a monotone increasing function of the sufficient statistic, then all

score-function quantizers can be expressed as thresholds on the suf-

ficient statistic.

By using a technique similar to [10], it can be shown that any

extreme point in the set of quantizer p.m.fs is achieved by a score-

function quantizer. Therefore, if a minimax quantizer corresponds to

an extreme point, it would be equivalently expressible as thresholds

on the sufficient statistic. Although, we do not have an analytical

proof, our numerical simulations suggest that this is true.

5. CONCLUSION AND FUTURE EXTENSIONS

In this work, we proposed a metric for the design of quantizers in

deterministic parameter estimation. We developed an iterative algo-

rithm to optimize the minimax metric and showed the convergence.

For certain distributions like additive noise observations, the quan-

tizer requires the least sample size amongst all deterministic quantiz-

ers. Although the algorithm is computationally intensive, it is pos-

sible to implement it offline and pass on the partition information

alone to the nodes. Possible future extensions of this problem in-

clude extending the idea to vector parameters and generalizing the

metric to include noisy channels. When the channel is not ideal, the

quantizer design would depend on channel characteristics as well.

The application of this quantizer is not restricted to distributed

estimation. For example, when estimating frequency of a signal, it

may not be possible to handle a high resolution for each sample and

so the minimax quantizer can be used before processing so that the

final estimation performance is optimal.

6. APPENDIX

Proof of Theorem 1

Consider the minimax criterion:

arg min
γ

max
θ

Jθ

Iθ

= arg max
γ

min
θ

Iθ

Jθ

= arg min
γ

max
θ

1 −
Iθ

Jθ

= arg min
γ

max
θ

Jθ − Iθ

Jθ

It is easily shown that

Jθ − Iθ

Jθ

=
X

i

Z
Ti

pθ(x)

Jθ

[Sθ(x) − Sθ(i)]
2 dx

where Ti = {x : γ(x) = i}. Using (8) and (9), we get

max
θ

Jθ − I
(n)
θ

Jθ

= max
θ

X
i

Z
T

(n)
i

pθ(x)

Jθ

h
Sθ(x) − S

(n)
θ (i)

i2
dx

≤ max
θ

X
i

Z
T

(n)
i

pθ(x)

Jθ

h
Sθ(x) − S

(n−1)
θ (i)

i2
dx

≤
X

i

Z
T

(n−1)
i

pθ∗(x)

Jθ∗

h
Sθ∗(x) − S

(n−1)
θ∗ (i)

i2
dx

= max
θ

Jθ − I
(n−1)
θ

Jθ

We know that Iθ ≤ Jθ for every value of θ. Therefore the metric
is lower bounded by 0. Since, the algorithm reduces the metric at
every iteration, in the absence of local minima, the inequalities are

strict and hence the algorithm converges to the optimal quantizer in

finite steps.
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