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ABSTRACT

Consider n-dimensional observations where random signals
are present or absent in independent and additive white Gaus-
sian noise (AWGN) with standard deviation σ0. On the ba-
sis of recent results in statistical decision theory, this paper
presents a new algorithm for estimating σ0 when the signals
are less present than absent and have unknown probability
distributions. The bias, the consistency and the minimum
attainable mean square estimation error of the estimator we
propose are still unknown. However, experimental results are
very promising. When the Minimum-Probability-of-Error de-
cision scheme for the non-coherent detection of modulated
sinusoidal carriers in independent AWGN is tuned with the
estimate instead of the true value σ0, the Binary Error Rate
obtained tends rapidly to the optimal error probability after a
few hundred observations.

1. INTRODUCTION

In many signal processing applications, observations are mod-
elled by n-dimensional random vectors that result from the
random presence of signals in independent and additive white
Gaussian noise (AWGN). When the noise standard deviation
is unknown, it may be necessary to perform an estimate of it
in order to adjust some further processing. For instance, Con-
stant False Alarm Rate (CFAR) systems, standardly used in
radar processing, perform an estimate of the noise standard
deviation in order to detect radar targets with a false alarm
rate close to some pre-specified value.

To perform an estimate of the noise standard deviation,
one way is to rely on the physics of the problem as in radar
processing. In contrast to this approach, we propose an esti-
mator based on statistics only.

This paper is organized as follows. Section 2 presents a
theoretical result on the basis of preliminary pieces of termi-
nology and notations. This theoretical result is a simplified
version of a more general limit theorem established in [5].
This simplified version is sufficient to derive an estimator of
the noise standard deviation in section 2.1. This estimator
applies to sets of non signal-free observations where signals

have unknown probability distributions and unknown proba-
bilities of presence (or priors) less than or equal to one half.
The bias, the consistency and the mean square error of this
estimator are still unknown. Nevertheless, experimental re-
sults presented in section 3 are very promising. In fact, when
the estimate performed by the algorithm we propose is used
instead of the true value of the noise standard deviation for
the non-coherent detection of modulated sinusoidal carriers,
the Binary Error Rate (BER) rapidly tends to the optimal er-
ror probability after a few hundred observations. Concluding
remarks and perspectives are given in section 4.

2. A THEORETICAL RESULT FOR ESTIMATING
THE NOISE STANDARD DEVIATION

In what follows, only one probability space (Ω,M, P ) is con-
sidered and every random vector or variable is assumed to be
defined for every ω ∈ Ω by setting this random vector or vari-
able to 0 on any negligible subset where it could be undefined.
As usual, if a property P holds true almost surely, we write P
(a-s).

Let S stand for the set of all the sequences of n-dimensio-
nal real random vectors. Given a positive real value σ0, an
element X = (Xk)k∈N of S will be called an n-dimensional
white Gaussian noise (WGN) with standard deviation σ0 if
the random vectors Xk, k = 1, 2, . . ., are mutually indepen-
dent and identically Gaussian distributed with null mean vec-
tor and covariance matrix σ2

0In.
We define the minimum amplitude of an element Λ =

(Λk)k∈N of S as the supremum a(Λ) of the set of those α ∈
[0,∞] such that, for every natural number k, ‖Λk‖ is larger
than or equal to α (a-s):

a(Λ) = sup {α ∈ [0,∞] : ∀k ∈ N, ‖Λk‖ ≥ α (a-s)} . (1)

If f is some map of S into R, we say that the limit of f is
� ∈ R when a(Λ) tends to∞ and write that lim

a(Λ)→∞ f(Λ) =
� if, for any positive real value η, there exists some α0 ∈
(0,∞) such that, for every α ≥ α0 and every Λ ∈ S such that
a(Λ) ≥ α, we have that |f(Λ) − �| ≤ η.
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Let L2(Ω,Rn) stand for the set of those n-dimensional
real random vectors Y such that E[‖Y ‖2] < ∞. We will
hereafter deal with the set �∞(N, L2(Ω,Rn)) ⊂ S of those
elements Λ = (Λk)k∈N of S such that Λk ∈ L2(Ω,Rn) for
every k ∈ N and supk∈N

E[‖Λk‖2] is finite.
In what follows, 0F1 is the generalized hypergeometric

function ([3, p. 275]); given ρ ∈ [0,∞), ξ(ρ) is the unique
positive solution for x in the equation 0F1(n/2; ρ2x2/4) =

eρ2/2; Θ stands for the map defined for every x ∈ [0,∞)

by Θ(x) =
∫ x

0
tne−t2/2dt/

∫ x

0
tn−1e−t2/2dt. The following

result is a particular case of a more general limit theorem es-
tablished in [5]. Given any random vector Y and any real
number τ , I(‖Y ‖ ≤ τ) stands for the indicator function of
the event {‖Y ‖ ≤ τ}.

Proposition 2.1 Let U = (Uk)k∈N be some element of S
such that, for every k ∈ N, Uk = εkΛk + Xk where Λ =
(Λk)k∈N ∈ �∞(N, L2(Ω,Rn)), X = (Xk)k∈N is some n-
dimensionalWGN with standard deviation σ0 and ε = (εk)k∈N

is a sequence of random variables valued in {0, 1} respec-
tively.

Assume that
(A1) for every k ∈ N, Λk, Xk and εk are mutually indepen-

dent;
(A2) the random vectors Uk, k ∈ N, are mutually indepen-

dent;
(A3) the random variables εk, k ∈ N, are mutually indepen-

dent;
(A4) the priors P ({εk = 1}), k ∈ N, are less than or equal

to one half.

Given some natural number m and any pair (σ, T ) of pos-
itive real numbers, define the random variable ∆m(σ, T ) by

∆m(σ, T ) =

∣∣∣∣∣∣∣∣∣∣

m∑
k=1

‖Uk‖I(‖Uk‖ ≤ σT )

m∑
k=1

I(‖Uk‖ ≤ σT )

− σΘ(T )

∣∣∣∣∣∣∣∣∣∣
. (2)

Then, σ0 is the unique positive real number σ such that,
for every β0 ∈ (0, 1],

lim
a(Λ)→∞

∥∥∥lim
m

∆m(σ, βξ(a(Λ)/σ))
∥∥∥
∞

= 0 (3)

uniformly in β ∈ [β0, 1].

In this statement, U models a sequence of observations
where, for every given k ∈ N, Λk stands for some possible
random signal and εk models the possible occurrence of Λk

in the background of AWGN modelled by X . The assump-
tion that Λ ∈ �∞(N, L2(Ω,Rn)) corresponds to the practical
case of interest where the energies of the signals are finite and
bounded.

2.1. The algorithm

Even though proposition 2.1 and the theoretical results of [5]
concern signals whose minimum amplitude is large enough,
one of the conclusions of [6] is that this constraint can cer-
tainly be relaxed in practical applications. Hence, in the present
paper, we propose to perform an estimate of the noise stan-
dard deviation by taking a(Λ) = 0 since the null value is a
trivial bound for the norm of any signal. By so proceeding,
we significantly extend the algorithm proposed in [6] since we
discard any hypothesis regarding the probability distributions
and the norms of the signals and simply assume that these
signals are less present than absent.

The algorithm is then the following one. We keep the
notations of the foregoing section. Suppose that we have m
observations U1, . . . , Um. Let L ∈ N and set β� = �/L for
every � ∈ {1, . . . , L}. Proposition 2.1 suggests estimating σ0

by a possibly local minimum of

sup
�∈{1,...,L}

∆m(σ, β�ξ(a(Λ)/σ)).

Since we take a(Λ) = 0 and know that ξ(0) =
√

n ([4]), we
start by computing a minimum σ̂0 of

sup
�∈{1,...,L}

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣∣∣∣∣∣∣∣∣

m∑
k=1

‖Uk‖I(‖Uk‖ ≤ β�σ
√

n)

m∑
k=1

I(‖Uk‖ ≤ β�σ
√

n)

− σΘ(β�

√
n)

∣∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(4)
Any minimization routine for scalar bounded non-linear func-
tions is suitable. For instance, the experimental results pre-
sented in the next section were obtained with the MATLAB
routine fminbnd.m based on parabolic interpolation ([8]).
The search interval [σmin, σmax] is computed as follows. Sort
the observations U1, . . . , Um, k = 1, . . . , m, by increasing
norm. Let U[k], k = 1, . . . , m, be the resulting sequence. The
right endpoint of the search interval is then σmax = ‖U[m]‖/

√
n.

As far as the left endpoint is concerned, choose a real num-
ber Q close to 1 but less than or equal to 1 − m

4(m/2−1)2 .
A typical choice is Q = 0.95, provided that m ≥ 24. Set
h = 1/

√
4m(1 − Q) and kmin = m/2 − hm. The left end-

point is then σmin = ‖U[kmin]‖/
√

n. Because of the limited
length of this paper, the reader is asked to refer to [5] and [6]
for justifications as to this construction of the search interval.

It would be natural to stop at this stage. In fact, we go a
step further and our final estimate of the noise standard devi-
ation is

σ̃0 =

√√√√√√√√√

m∑
k=1

‖Uk‖2I(‖Uk‖ ≤ σ̂0

√
n)

m∑
k=1

I(‖Uk‖ ≤ σ̂0

√
n)

. (5)

III ­ 649



The rationale is the following. Since ξ is a non-decreasing
map and ξ(0) =

√
n, it follows from [4] that σ0

√
n is the

smallest threshold that should be used to detect, with a proba-
bility of error less than or equal to 1/2, any signal less present
than absent. It is to be expected that most of the observations
with norms less than or equal to this threshold derive from
noise alone. On the other hand, if an observation is equal
to some signal plus noise and has a norm less than or equal
to this threshold, the norm of the signal can reasonably be
expected to be very small and, thus, to hardly influence the
estimate σ̃0.

3. EXPERIMENTAL RESULTS

The bias, the consistency and the minimum attainable mean
square estimation error of the estimator proposed above are
still unknown. Therefore, in this section we will restrict our-
selves to some experimental results.

We keep the notations used so far. Given any non-negative
real number A, let T̃ be the test I(‖ · ‖ ≥ σ̃0ξ(A/σ̃0)).
Given k ∈ N, the decision of this test is that εk is 0 if
‖Uk‖ ≤ σ̃0ξ(A/σ̃0) and that εk is 1, otherwise. If σ̃0 is a
reasonably good estimate of the noise standard deviation, the
performance of test T̃ can be expected to be close to that of
the thresholding test with threshold height σ0ξ(A/σ0); given
any real number x, by thresholding test with threshold height
x ∈ R, we mean the test Tx defined for every u ∈ R

n by
Tx(u) = 1 if ‖u‖ ≥ x and Tx(u) = 0 if ‖u‖ < x. To detect
the presence of any signal with norm larger than or equal to
A and prior less than or equal to one half, it follows from [4,
Theorem VII.1] that the probability of error Pe{Tσ0ξ(A/σ0)}
of Tσ0ξ(A/σ0) satisfies the following inequalities

Pe{L} ≤ Pe{Tσ0ξ(A/σ0)} ≤ V (A/σ0). (6)

In (6), Pe{L} stands for the probability of error of the Mini-
mum-Probability-of-Error (MPE) decision scheme L, that is
the likelihood ratio test with the smallest possible probability
of error among all possible hypothesis binary tests; the map V
is defined for every x ∈ [0,∞) and the reader can refer to [4]
for the general expression of this map. The inequalities above
then become equalities in the least favourable situation where
the signal is uniformly distributed on the sphere ASn−1 cen-
tred at the origin with radius A and has prior equal to one
half ([4, Theorem VII.1]). Therefore, if every Λk, k ∈ N,
is uniformly distributed on ASn−1 and has prior less than or
equal to 1/2, the probability of error Pe{T̃ } of T̃ should not
significantly exceed V (A/σ0). If every Λk has prior equal
to one half, Pe{T̃ } should even be close to V (A/σ0). We
do not know the theoretical value of Pe{T̃ }. Hence, we ap-
proximate it by the Binary Error Rate (BER) obtained by a
Monte-Carlo simulation and compare this BER to V (A/σ0).
This Monte-Carlo simulation is carried out in the case of two-
dimensional real random observations (n = 2); we choose
some p ∈ (0, 1/2] and every Λk is uniformly distributed on

AS1 and has a probability of presence equal to p. We then

have V (x) = 1
2e−

x
2

2

∫ x

0
e−

t
2

2 tI0(xt)dt + 1
2e−

t
2

2 where I0

is the zeroth-order modified Bessel function of the first kind
([4]). The two components of every Λk can be regarded as
the in-phase and quadrature components of a sinusoidal car-
rier. In other words, we consider the “non-coherent detection
of modulated sinusoidal carriers”, a problem particularly rele-
vant for telecommunication and radar processing ([7, p. 65]).

The BER of T̃ is computed as follows. Independent trials
of m observations each are carried out until two conditions are
fulfilled. First, at least M trials must be performed. Inasmuch
as the decision about the presence or the absence of signals is
made on the observations used for estimating σ0, the accuracy
of the estimate affects m decisions at one go. This effect is
then reduced by fixing a minimum number of trials. Second,
the total number Ne of errors made by test T̃ for detecting the
presence or the absence of signals must be above or equal to
some specified number N . If j is the first trial number larger
than or equal to M for which the total number of errors Ne

becomes larger than or equal to N , the BER of test T̃ is then
defined as the ratio Ne/(j × m).

The simulation is achievedwith σ0 = 1. The pre-specified
number of errors is N = 400 and the minimum number of tri-
als is M = 100. We choose L = m and Q = 0.95 on the ba-
sis of preliminary trials. The comparison between the BER of
T̃ and V (A/σ0) is achieved for A = {0.5, 1, 1.5, . . . , 5} and
p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. The results are those of figures
1, 2 and 3 for different values of m. Test T̃ yields perfor-
mance close to that of Tσ0ξ(A/σ0). Figures 4 and 5 present the
average value and the standard deviation of σ̃0 calculated on
the basis of 100 trials for m = 100 observations.
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Fig. 1. V (A/σ0) vs BERs of T̃ for m = 50

4. PERSPECTIVES AND EXTENSIONS

We have presented an algorithm for estimating the standard
deviation of some background of AWGN when observations
derive from signals less present than absent in this background.
According to experimental results, this algorithm is very pro-
mising. Further theoretical developments should address the

III ­ 650



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A

V(A/σ
0
)

p = 0.1
p = 0.2
p = 0.3
p = 0.4
p = 0.5

Fig. 2. V (A/σ0) vs BERs of T̃ for m = 100
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Fig. 3. V (A/σ0) vs BERs of T̃ for m = 200
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Fig. 4. Average value of σ̃0
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Fig. 5. Standard deviation of σ̃0

bias, the consistency and the mean square estimation error of
this algorithm. Possible links between the approach proposed
in this paper and that introduced in [2] is also an issue to ad-
dress.

From a more practical point of view, the estimator we pro-
pose can contribute to the detection of radar and sonar tar-
gets in complement to standard approaches. It can also be
expected to avoid the use of a Voice Activity Detector for
tuning standard Wiener filtering or spectral substraction for
denoising speech signals corrupted by AWGN.
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