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ABSTRACT
This paper analyzes the effects of local coordinate shifts on the re-
sulting estimation bias for the total least squares (TLS) bearings-
only target location algorithm. The TLS estimator has been proposed
to alleviate the severe bias problems associated with the traditional
pseudolinear estimator. An interesting property of the TLS estimator
is that its bias is affected by changes in the origin of the local Carte-
sian coordinates. This is formally proven and demonstrated in the
paper. Suggestions are also provided as to how to reduce the TLS
estimation bias through local coordinate shifts.

1. INTRODUCTION

The objective of bearings-only target localization is to estimate the
location of a target by utilizing a sequence of bearing measurements
collected by a moving observer or fixed observers at distinct loca-
tions. The pseudolinear estimator [1] provides a simple closed-form
solution to the bearings-only target localization problem. Despite
its low complexity and the absence of convergence problems, the
pseudolinear estimator suffers from large estimation bias due to the
correlation between the measurement matrix and the bearing noise.
The bias of the pseudolinear estimator has been studied in the tar-
get tracking and localization literature (see e.g. [1, 2]). To overcome
this bias problem, various fixes have been proposed based on batch
iterative and closed-form instrumental variables [1, 3, 4], and total
least squares (TLS) [5, 6]. Unlike the pseudolinear estimator, the
TLS estimator attempts to correct the errors in both the measure-
ment matrix and the data vector. This generally results in improved
bias performance.

In this paper we provide formal proofs for the dependence of the
TLS estimation bias on the target localization geometry, in particular
local coordinate shifts for a given geometry. These proofs are based
on preliminary observations made in [6] regarding bias variations
with geometry translations involving rotations and/or shifts. Some
suggestions are also provided as to how the origin of local coordi-
nates should be selected in order to reduce the TLS estimation bias.
The formal results are backed up with simulation examples.

2. PASSIVE BEARINGS-ONLY TARGET LOCALIZATION

The two-dimensional passive target localization problem using bear-
ing measurements is depicted in Fig. 1 where p is the location of a
stationary target, and θk and rk are the bearing angle and observer
position, respectively, at time instant k. The relationship between
θk, rk and p is given by the nonlinear equation:

θk = tan−1 ∆yk

∆xk
, k = 1, . . . , N (1)
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Fig. 1. Two-dimensional bearings-only target localization geometry.

where ∆yk = py − ry,k, ∆xk = px − rx,k, p = [px, py]T and
rk = [rx,k, ry,k]T . Here T denotes matrix transpose.

The objective of target localization is to estimate the target lo-
cation p from a sequence of bearing measurements over the interval
1 ≤ k ≤ N . In practice, the bearing measurements are modelled as

θ̃k = θk + nk, k = 1, . . . , N (2)

where the θ̃k are the bearing measurements and nk is zero-mean
white Gaussian bearing noise with variance σ2

nk
. We assume that

the target is observable from the available observer positions and
bearing measurements.

The nonlinear relationship between the bearing angles and the
receiver locations can be formulated as a linear matrix equation [2]:

Ap = b + η (3)

where
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�
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...
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����

η1

η2

...
ηN

�
���� . (4)

Here ak = [sin θ̃k,− cos θ̃k]T and ηk = ‖p − rk‖2 sin nk. The
least squares solution to Ap ≈ b, given by p̂PLE = (AT A)−1AT b,
is referred to as the pseudolinear estimator (PLE).

3. TLS LOCATION ESTIMATOR

The PLE estimator exhibits large bias. It may be possible to reduce
the estimation bias significantly by employing TLS to solve Ap ≈ b

in (3) [5]. Central to TLS is the concept of perturbing both A and b
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in a minimal fashion, rather than b only as in the case of LS estima-
tion, to obtain a consistent matrix equation that relates the perturbed
A to the perturbed b. TLS aims to solve the following constrained
minimization problem [7, 8]

[∆̂, δ̂] = arg min
b+δ∈Range(A+∆)

‖L[∆, δ]T ‖F (5)

where L and T are nonsingular diagonal weighting matrices

L = diag(l1, l2, . . . , lN )

T = diag(t1, t2, t3)

and ‖ · ‖F denotes the Frobenius norm defined by

‖H‖F =

��
i

�
j

|hij |
2

�1/2

.

The TLS solution is given by p̂TLS which satisfies

(A + ∆̂)p̂TLS = b + δ̂ (6)

where ∆̂ and δ̂ are the minimal TLS perturbations defined in (5) [9].
Next we consider how to obtain ∆̂, δ̂ and p̂TLS. The TLS esti-

mate defined in (6) can be obtained from the singular value decom-
position (SVD) of the weighted augmented matrix [9]

L[A, b]T = UΣV
T =

3�
i=1

σiuiv
T
i (7)

where σ1 ≥ σ2 ≥ σ3 ≥ 0 are the singular values, and U =
[u1, u2, u3] and V = [v1, v2, v3] are orthogonal matrices, i.e.,
UT U = I and V T V = I . We shall assume σ2 > σ3, which
avoids the complications involved with finding a TLS solution for
repeated singular values. The perturbations ∆̂ and δ̂ minimizing (5)
are obtained from a reduced rank approximation of L[A, b]T [9]:

L[A + ∆̂, b + δ̂]T = L[A, b]T + L[∆̂, δ̂]T =

2�
i=1

σiuiv
T
i

(8a)

[A + ∆̂, b + δ̂] = L
−1

�
2�

i=1

σiuiv
T
i

�
T

−1. (8b)

It follows from (7) and (8) that

L[∆̂, δ̂]T = −σ3u3v
T
3 (9a)

[∆̂, δ̂] = −σ3L
−1

u3v
T
3 T

−1 (9b)

where ‖L[∆̂, δ̂]T ‖F = σ3. Using (8), (6) can be rewritten as

[A + ∆̂, b + δ̂]

�
p̂TLS
−1

�
= 0 (10a)

L
−1

�
2�

i=1

σiuiv
T
i

�
T

−1

�
p̂TLS
−1

�
= 0. (10b)

Noting that vT
1 v3 = vT

2 v3 = 0 because V is an orthogonal ma-
trix, the solution of (10b) must have the form [p̂T

TLS,−1]T = cT vT
3

where c = −1/(t3v33) and v3 = [v13, v23, v33]
T . Thus, the TLS

estimate is given by

p̂TLS = −
1

t3v33

�
t1v13

t2v23

�
. (11)

4. ERROR STATISTICS FOR A AND b

The mean values of the errors between the measured and noise-free
entries of [A, b] are

E{sin θ̃k − sin θk} = γ̄k sin θk (12a)

E{− cos θ̃k + cos θk} = −γ̄k cos θk (12b)

E{aT
k rk − [sin θk,− cos θk]rk} = γ̄k[sin θk,− cos θk]rk (12c)

where γ̄k = E{cos nk} − 1.
For sufficiently small bearing noise, we have sin nk ≈ nk and

cos nk ≈ 1, which results in

sin θ̃k − sin θk ≈ nk cos θk (13a)

− cos θ̃k + cos θk ≈ nk sin θk (13b)

a
T
k rk − [sin θk,− cos θk]rk ≈ nk[cos θk, sin θk]rk (13c)

and

E{(sin θ̃k − sin θk)2} ≈ σ2
nk

cos2 θk (14a)

E{(cos θ̃k − cos θk)2} ≈ σ2
nk

sin2 θk (14b)

E{(aT
k rk − [sin θk,− cos θk]rk)2} ≈ σ2

nk
([cos θk, sin θk]rk)2.

(14c)

The fact that the noise variance on each entry of [A, b] depends
on the true bearing angle as well as the observer positions makes the
determination of appropriate diagonal weighting matrices extremely
difficult, if not impossible. Therefore, we will assume L = I and
T = I . As a result, the TLS estimator in (11) becomes

p̂TLS = −
1

v33

�
v13

v23

�
(15)

where v3 is obtained from the SVD [A, b] =
�3

i=1 σiuiv
T
i .

5. BIAS OF THE TLS ESTIMATOR

The following theorem gives an expression for the TLS bias in terms
of the TLS perturbation ∆̂ and the matrix equation noise η:

Theorem 1. For L = I and T = I , the bias of the TLS target
location estimator is given by

E{p̂TLS} − p = −E{((A + ∆̂)T
A)−1(A + ∆̂)T

η}. (16)

Proof. Using (6), the normal equations for the TLS estimator can be
written as

(A + ∆̂)T (A + ∆̂)p̂TLS = (A + ∆̂)T (b + δ̂) (17)

which can be solved to obtain

p̂TLS = ((A + ∆̂)T (A + ∆̂))−1(A + ∆̂)T (b + δ̂). (18)

Using (8) and (9), we have

[A + ∆̂, b + δ̂]T [∆̂, δ̂] =

�
(A + ∆̂)T

∆̂ (A + ∆̂)T δ̂

(b + δ̂)T
∆̂ (b + δ̂)T δ̂

�
(19a)

= −σ3

�
2�

i=1

σiviu
T
i

�
u3v

T
3 (19b)

= 0 (19c)
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where uT
1 u3 = uT

2 u3 = 0 since U is an orthogonal matrix. Thus
the perturbed augmented matrix [A + ∆̂, b + δ̂] and the TLS per-
turbations [∆̂, δ̂] are orthogonal.

Using (19), (18) can be simplified to

p̂TLS = ((A + ∆̂)T
A)−1(A + ∆̂)T

b. (20)

Substituting b = Ap − η (see (3)) into (20) yields

p̂TLS = ((A + ∆̂)T
A)−1(A + ∆̂)T (Ap − η) (21a)

= p − ((A + ∆̂)T
A)−1(A + ∆̂)T

η. (21b)

Re-arranging and taking the expectation gives (16).

Asymptotically (as N → ∞) we have

plim p̂TLS = p − plim

�
(A + ∆̂)T A

N

�
−1

plim
(A + ∆̂)T η

N

(22)
where plim denotes the probability limit and is defined by [10]

plim p̂ = p
∗ ⇐⇒ lim

N→∞

P{|p̂ − p
∗| > ε} = 0

for every ε > 0. Therefore, for sufficiently large N , the TLS bias
can be approximated by

−E{(A + ∆̂)T
A}−1E{(A + ∆̂)T

η}. (23)

6. EFFECT OF GEOMETRY SHIFTS ON TLS BIAS

The local Cartesian coordinates can be shifted by ψ by simply adding
ψ to a given position vector x:

xψ = x + ψ. (24)

The TLS estimation error after a coordinate shift is given by

β
′

ψ = −((Aψ + ∆̂ψ )T
Aψ )−1(Aψ + ∆̂ψ )T

η (25a)

= −((A + ∆̂ψ )T
A)−1(A + ∆̂ψ )T

η. (25b)

Theorem 2. The TLS estimation error is not invariant to coordinate
shifts, i.e.,

β
′

ψ 	= β
′ for ψ 	= 0 (26)

where β′ = p̂TLS − p = −((A + ∆̂)T A)−1(A + ∆̂)T η.

Proof. According to (25b), β′

ψ = β′ for ψ 	= 0 if ∆̂ψ = ∆̂. From

(6) we see that if ∆̂ were invariant to coordinate shifts, we would
have

(A + ∆̂ψ )(p̂TLS + ψ) = (A + ∆̂)(p̂TLS + ψ) (27a)

= b + δ̂ + (A + ∆̂)ψ (27b)

= bψ + δ̂ψ (27c)

where δ̂ψ = δ̂ + ∆̂ψ. Thus, the TLS estimation error invariance to
coordinate shifts requires the TLS perturbations to be

∆̂ψ = ∆̂, δ̂ψ = δ̂ + ∆̂ψ. (28)

Given the SVD [A, b] = UΣV T , a coordinate shift by ψ re-
sults in

[Aψ , bψ ] = [A, b + Aψ] (29a)

= UΣV
T
ψ (29b)

where

V ψ =

�
V 1

(ν2 + V T
1 ψ)T

�
(30)

with

V 1 =

�
v11 v12 v13

v21 v22 v23

�
, ν2 =

�
�v31

v32

v33

�
� . (31)

Equation (29b), which assumes the hypothesized forms of the TLS
perturbations in (28), cannot be an SVD of [Aψ , bψ ] since V T

ψV ψ 	=
I , i.e., V ψ is not an orthogonal matrix. Thus, the TLS perturbations
given by (28) that are required to enable the invariance of the TLS
estimation error to coordinate shifts are not tenable. In other words,
∆̂ψ 	= ∆̂ which implies β′

ψ 	= β′ for ψ 	= 0.

The optimal coordinate shift for minimizing the TLS bias is

ψmin = arg min
ψ

‖E{β′

ψ}‖2. (32)

A closed-form solution for the above minimization problem is not
available. Referring to (13), it is seen that the errors in A are invari-
ant to coordinate shifts while those in b are dependent on coordi-
nate shifts. If the localization coordinates are shifted away from the
origin, this has the effect of increasing the observer location vector
norms, which in turn increases the second-order moments of error
on b. This unproportionate increase in the second-order moments
tends to deteriorate the TLS bias.

To reduce the TLS bias requires to shift the localization coordi-
nates towards the origin so as to reduce the error on b. Using this
observation, the TLS bias may be reduced by choosing a coordinate
shift that minimizes the sum of second-order moments for the errors
in b:

min
ψ

N�
k=1

σ2
nk

([cos θk, sin θk](rk + ψ))2. (33)

The above minimization problem does not generally yield minimum-
bias coordinate shifts although it may enable significant bias reduc-
tion.

In target localization problems, only measured noisy bearing an-
gles are available. Even though (33) makes use of noise-free bear-
ings θk, a good estimate for the bias-minimizing shift ψmin can be
obtained by replacing the θk with the θ̃k. While this modification
yields a practical criterion for selecting ψ, its accuracy will depend
on the bearing noise variance among other things.

7. SIMULATION STUDIES

The original simulated target localization geometry is shown in Fig. 2
where the true target location is p = [−17.4, 98.5]T km and N =
40 bearing measurements are taken at regular intervals along a linear
trajectory between r1 = [0, 30]T km and rN = [40, 20]T km. The
bearing noise standard deviation is 5◦. As is evident from Fig. 2,
both the pseudolinear and TLS estimators exhibit large estimation
bias even though the TLS bias is smaller.

To demonstrate the effect of local coordinate shifts on the TLS
bias, the TLS bias was estimated for each shift in the range −40 ≤
ψx ≤ 0 and −40 ≤ ψy ≤ −10. The resulting TLS bias norm
surface is plotted in Fig. 3. The bias surface is not flat and appears to
favour certain coordinate shifts as far as bias reduction is concerned.
The minimum bias was obtained at shift ψmin = [−24,−23]T . The
geometry for this shift is shown in Fig. 4 along with the pseudolinear
and TLS estimation results. A comparison of Figs. 2 and 4 confirms
that the TLS estimation bias is significantly reduced by shifting the
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Fig. 2. Simulated geometry with error ellipses for PLE and TLS
estimators.
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Fig. 3. TLS estimation bias as a function of coordinate shift.

origin of the local coordinates in Fig. 2 by [−24,−23]T km while
the PLE bias remains invariant to coordinate shifts. As predicted in
Section 6, bringing the receiver locations close to the origin appears
to do the trick when it comes to reducing the TLS estimation bias.

8. CONCLUSIONS

This paper has analyzed the sensitivity of the TLS estimation bias
to local coordinate shifts in bearings-only target localization prob-
lems. Optimal coordinate shift that gives the minimum bias is not
easy to determine without resorting to computer simulations. It was
discovered that the observers must be close to the origin of the lo-
cal coordinates after a coordinate shift in order to ensure some bias
reduction.
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Fig. 4. Minimum-bias geometry and error ellipses for PLE and TLS
estimators.
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