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ABSTRACT

We present a sequential Monte Carlo (SMC) method for maximum
likelihood (ML) parameter estimation in latent variable models. Stan-
dard methods rely on gradient algorithms such as the Expectation-
Maximization (EM) algorithm and its Monte Carlo variants. Our
approach is different and motivated by similar considerations to sim-
ulated annealing (SA); that is we propose to sample from a sequence
of artificial distributions whose support concentrates itself on the set
of ML estimates. To achieve this we use SMC methods. We con-
clude by presenting simulation results on a toy problem and a non-
linear non-Gaussian time series model.

1. INTRODUCTION

1.1. Problem Formulation

The situation in which we are interested in is that in which one has
some likelihood function p(y, z|θ) in which (y, z) ∈ Y × Z for
observed data y and latent variables (often called “hidden data”), z.
Although this joint likelihood is known, as z is not observed, the
marginal likelihood

p(y|θ) =

Z
p(y, z|θ)dz (1)

is the quantity of interest, and as this integral is generally not tractable,
it is not straightforward to maximise it with respect to the parameters
to obtain the (marginal) maximum likelihood (ML) estimator:

θ̂ML = argmax
θ∈Θ

p(y|θ). (2)

1.2. Previous Approaches

When the marginal likelihood p(y|θ) can be evaluated, the classical
approach to problems of this sort is the EM algorithm [1], which is
a numerically well-behaved gradient-based algorithm. For complex
models, p(y|θ) cannot be computed analytically and typically the
expectation step of the EM algorithm cannot be performed in closed-
form either. In such scenarios, Monte Carlo variants of EM have
been proposed – including stochastic EM (SEM), Monte Carlo EM
(MCEM) and stochastic approximation EM (SAEM). See [2] for a
comparative summary of these approaches. Note that all of these
(stochastic) gradient-based approaches are susceptible to trapping in
local modes.

An alternative approach related to SA is to build a sequence of
distributions which concentrates itself on the set of the required es-
timate. Let p(θ) be an instrumental prior distribution whose support

includes the ML estimate then the distributions

pML
γ (θ|y) ∝ p (θ) p(y|θ)γ

concentrate themselves on the set of ML estimates as γ → ∞.
Indeed asymptotically the contribution from this instrumental prior
vanishes. The term p(θ) is here only present to ensure that the distri-
butions

˘
pML

γ (θ|y)
¯

are integrable – it may be omitted in those in-
stances in which this is already the case. To sample from these distri-
butions, one would like to use Markov chain Monte Carlo (MCMC)
methods. Unfortunately, this is impossible whenever p(y|θ) is not
known pointwise up to a normalizing constant.

To circumvent this problem, it has been proposed in [3] (in a
Maximum a Posteriori, rather than ML, setting) to build a sequence
of artificial distributions known, up to a normalizing constant, which
admit as a marginal distribution the target distribution pML

γ (θ|y) for
an integer power γ greater than one. A similar scheme was subse-
quently been proposed by [4, 5] in the ML setting. This is achieved
by simulating a number of replicates of the missing data where one
defines

pγ(θ, z1:γ |y) ∝ p(θ)

γY
i=1

p(y, zi|θ) (3)

with zi:j = (zi, ..., zj). Indeed it is easy to check thatZ
· · ·

Z
pγ(θ, z1:γ |y)dz1:γ = pML

γ (θ|y).

The approach of [3] is to construct an inhomogeneous Markov chain
which produces samples from a sequence of such distributions for
increasing values of γ. Just as in SA, this concentrates the mass on
the set of global maxima of p(y|θ) as γ becomes large. Another ap-
proach proposed by [4] is to construct a homogeneous Markov chain
whose invariant distribution corresponds to such a distribution for
a predetermined value of γ. It can be theoretically established that
these methods converge asymptotically towards the set of estimates
of interest if γ grows slowly enough to ∞. However in practice,
these approach suffer from several weaknesses. First, they allows
only integer values for γ. Second, unless a very slow annealing
schedule is used, the MCMC chain tends to become trapped in local
modes.

We propose another approach to sampling from pγ(θ, z1:γ |y).
We sample from this sequence of distributions using SMC. SMC
methods have been used primarily to solve optimal filtering prob-
lems in signal processing and statistics. They are used here in a
completely different framework which requires extensions of the
methodology described further in the paper. Broadly speaking, the
distributions of interest are approximated by a collection of ran-
dom samples termed particles which evolve over time using sam-
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pling and resampling mechanisms. The population of samples em-
ployed by our method makes it much less prone to trapping in lo-
cal maxima, and the framework naturally allows for the introduction
of bridging densities between target distributions, say, pγ(θ, z1:γ |y)
and pγ+1(θ, z1:γ+1|y) for an integer γ. At first glance, the algo-
rithm appears very close to mutation-selection schemes employed in
the genetic algorithms literature. However, there are two major dif-
ferences with these algorithms. First, they require the function be-
ing maximized to be known pointwise, whereas we do not. Second,
convergence results for our method follow straightforwardly from
general results on Feynman-Kac flows [6].

2. AN SMC SAMPLER APPROACH

2.1. Background

The SMC samplers framework of [7] is a very general method for
obtaining a set of samples from a sequence of distributions which
can exist on the same or different spaces. This is a generalisation
of the standard SMC method (commonly referred to as particle fil-
tering and summarised by [8]) in which the target distribution exists
on a space of strictly increasing dimension and no mechanism exists
for updating the estimates of the state at earlier times after receiv-
ing new data. It is not possible to give a thorough exposition of the
SMC samplers approach here, but we will try to include sufficient
detail for our purposes. We remark that convergence results, includ-
ing a central limit theorem, for the particle estimates obtained by
this method are available (indeed, these are applications of standard
results on Feynman-Kac flows [6]) and are contained in [7].

Given a sequence of distributions (πt)t≥1 on a sequence of mea-
surable spaces (Et, E)t≥1 from which we wish to obtain sets of
weighted samples, we construct a sequence of distributions on a se-
quence of spaces of increasing dimension which admit the distribu-
tions of interest as marginals, by defining:

eπt(x1:t) = πt(xt)
1Y

s=t−1

Ls(xs+1, xs)

where Ls is an arbitrary Markov kernel from space Es+1 to Es

(these act, in some sense, backwards in time). It is clear that stan-
dard SMC methods can now be applied on this space, by propagating
samples forward from one distribution to the next according to a se-
quence of Markov kernels, (Kt)t≥2, and correcting for the discrep-
ancy between the proposal and the target distribution by importance
sampling. As always it is important to ensure that a significant frac-
tion of the particle set have non-negligible weights. The effective
sample size (ESS), introduced by [9], is an approximation obtained
by Taylor expansion of a quantity which describes the effective num-
ber of iid samples to which the set corresponds. The ESS is defined

as ESS =
hPN

i=1 W (i)−2
i−1

where
n

W (i)
o

are the normalized

weights. This approximation, of course, fails if the particle set does
not accurately represent the support of the distribution of interest.
Resampling should be carried out after any iteration which causes
the ESS to fall below a reasonable threshold (typically around half
of the total number of particles), to prevent the sample becoming de-
generate with a small number of samples having very large weights.

The rapidly increasing dimension raises the concern that the
variance of the importance weights will be extremely high. It can be
shown (again, see [7]) that the optimal form for the Markov kernels
Ls – in the sense that they minimise the variance of the importance
weights if resampling occurs at every time step – depends upon the

distributions of interest and the importance sampling proposal ker-
nels Kt in the following way:

Lopt
t (xt+1, xt) =

πt(xt)Kt+1(xt, xt+1)R
πt(x)Kt+1(x, xt+1)dx

(4)

In practice it is important to choose a sequence of kernels which are
as close to the optimal case as possible to prevent the variance of the
importance weights from becoming extremely large.

2.2. SMC Samplers for Parameter Estimation

We will consider the use of the sampling methodology described
in the previous section for marginal ML estimation – noting that the
method can be easily adapted to Bayesian marginal Maximum a Pos-
teriori setting by considering a slightly different sequence of target
distributions. The target distribution which we propose as generally
admissible for this task, although any distribution from which an
efficient sampler can be constructed which admit marginals of the
desired form would be equally acceptable, is

πt(θ, z1:�γt�|y) ∝ p(θ)

�γt�Y
i=1

p(y, zi|θ)p(y, z�γt�|θ)
γt−�γt�

where �γt� denotes the largest integer not greater than γt and �γt�
the smallest integer not less than γt. This final term allows us to in-
troduce sequence with non-integer elements, whilst having the same
form as (3). Clearly, we have πt(θ, z1:�γt�|y) = pγt(θ, z1:γt |y) for
any integer γt. Again, an increasing sequence (γt)t≥1 is required,
corresponding in some sense to the annealing schedule of SA. To
simplify notation we will denote Z

(i)

t,1:�γt�
– the values of z1:�γt�

simulated at time t for the ith particle – by Z
(i)
t . Algorithm 1 de-

scribes the general framework which we propose.

Algorithm 1: The General Framework
Initialisation, t=1:

Sample,
n“

θ
(i)
1 , Z

(i)
1

”oN

i=1
independently from ν(·)

Calculate importance weights W
(i)
1 ∝

π1(θ
(i)
1 ,Z

(i)
1 )

ν(θ
(i)
1 ,Z

(i)
1 )

If ESS < Threshold, resample.
At time t > 1:

Sample,
n“

θ
(i)
t , Z

(i)
t

”oN

i=1
such that

∀1 ≤ i ≤ N :
“
θ
(i)
t , Z

(i)
t

”
∼ Kt

““
θ
(i)
t−1, Z

(i)
t−1

”
, ·

”
Calculate importance weights

W
(i)
t

W
(i)
t−1

∝
πt(θ

(i)
t ,Z

(i)
t )Lt−1

““
θ
(i)
t ,Z

(i)
t

”
,
“

θ
(i)
t−1,Z

(i)
t−1

””

πt−1(θ
(i)
t−1,Z

(i)
t−1)Kt

““
θ
(i)
t−1,Z

(i)
t−1

”
,
“

θ
(i)
t ,Z

(i)
t

””

If ESS < Threshold, resample.

It is interesting to consider an analytically convenient special
case, which leads to a particularly elegant algorithm, 2, below. When
we are able to sample from particular conditional distributions, and
evaluate the marginal likelihood pointwise, it is possible to evaluate
the optimal auxiliary kernels as given by (4). Although, the applica-
bility of the general algorithm to a much greater class of problems
is potentially more interesting we remark that the introduction of a
latent variable structure can lead to kernels which mix much more
rapidly than those used in a direct approach [2, p. 351].
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Algorithm 2: A Special Case
Initialisation, t=1:

Sample,
n“

θ
(i)
1 , Z

(i)
1

”oN

i=1
independently from ν(·)

Calculate importance weights W
(i)
1 ∝

π1(θ
(i)
1 ,Z

(i)
1 )

ν(θ
(i)
1 ,Z

(i)
1 )

If ESS < Threshold, resample.
At time t > 1:

Sample,
n“

θ
(i)
t , Z

(i)
t

”oN

i=1
such that ∀1 ≤ i ≤ N :

θ
(i)
t ∼ πt(·|z

(i)
t−1), Z

(i)

t,1:�γt−1�
= Z

(i)
t−1

for j = �γt−1� + 1 to �γt�, Z
(i)
t,j ∼ p(·|θ(i)

t )

and Z
(i)

t,�γt�
∼ p(·|θ(i)

t )γt−�γt�

Calculate importance weights
W

(i)
t ∝ W

(i)
t−1p(y|θ)γt−γt−1

If ESS < Threshold, resample.

Finally, we present a generic form of the algorithm which can
be applied to a broad class of problems, although it will often be less
efficient to use this generic formulation than to construct a dedicated
sampler for a particular class of problems. We assume that a col-
lection of Markov kernels (Kt)t≥1 with invariant distributions cor-
responding to (πt)t≥1 is available, and using these as a component
of the proposal kernels allows the evaluation of the optimal auxil-
iary kernel. We assume that good importance distributions for the
conditional probability of the variables being marginalised can be
sampled from and evaluated, q(·|θ), and that if the annealing sched-
ule is to include non-integer inverse temperatures, then we have ap-
propriate importance distributions for distributions proportional to
p(z|θ)α, α ∈ (0, 1), which we denote qα(z|θ). We remark that this
is not the most general possible approach, but is one which should
work acceptably for a broad class of problems.

Algorithm 3: A Generic Case
Initialisation, t=1:

Sample,
n“

θ
(i)
1 , Z

(i)
1

”oN

i=1
independently from ν(·)

Calculate importance weights W
(i)
t ∝

π1(θ
(i)
1 ,Z

(i)
1 )

ν(θ
(i)
1 ,Z

(i)
1 )

If ESS < Threshold, resample.
At time t > 1:

Sample,
n“

θ
(i)
t , Z

(i)
t

”oN

i=1
such that ∀1 ≤ i ≤ N :“

θ
(i)
t , Z

(i)

t,1:�γt−1�

”
∼ Kt−1

“
θ
(i)
t−1, Z

(i)
t−1; ·

”
for j = �γt−1� + 1 to �γt�, Z

(i)
t,j ∼ q(·|θ(i)

t )

and Z
(i)

t,�γt�
∼ qγt−�γt�(·|θ

(i)
t )

Calculate importance weights

W
(i)
t

W
(i)
t−1

∝
�γt�Q

j=�γt−1�+1

p(y,Z
(i)
j

|θ(i))p(y,Z
(i)
�γt�

|θ(i))γt−�γt�

q(Z
(i)
j

|θ(i))qγt−�γt�
(Z

(i)
γt

|θ(i)

If ESS < Threshold, resample.

3. EXAMPLES AND RESULTS

3.1. Toy Example

We consider first a toy example in one dimension. We borrow ex-
ample 1 of [5] for this purpose. The model consists of a student
t-distribution of unknown location parameter θ with 0.025 degrees
of freedom. Four observations are available, y = (−20, 1, 2, 3).
The logarithm of the marginal likelihood in this instance is given by:

log p(y|θ) = −0.525

4X
i=1

log
`
0.05 + (yi − θ)2

´

N T Mean Std. Dev. Min Max
50 15 1.992 0.014 1.95 2.03

100 15 1.997 0.013 1.97 2.04
20 30 1.958 0.177 1.09 2.04
50 30 1.997 0.008 1.98 2.01

100 30 1.997 0.007 1.98 2.01
20 60 1.998 0.015 1.91 2.02
50 60 1.997 0.005 1.99 2.01

Table 1. Simulation results for the toy problem. Each line sum-
marises 50 simulations with N particles and final temperature T .
Only one simulation failed to find the correct mode.

which is not susceptible to analytic maximisation. However, global
maximum is known to be located at 1.997, and local maxima exist at
{−19.993, 1.086, 2.906}. We can complete this model by consid-
ering the student t-distribution as a scale-mixture of Gaussians and
associating a latent variance parameter Zi with each observation.
The log likelihood is then:

log p(y, z|θ) = −
4X

i=1

ˆ
0.475 log zi + 0.025zi + 0.5zi(yi − θ)2

˜
In the interest of simplicity, we make use of a linear temperature

scale, γt = t, which takes only integer values. As we are able to
evaluate the marginal likelihood function pointwise, and can sample
from the conditional distributions

πt(z1:γt |θ, y) =

γtY
i=1

Ga

„
zi

˛̨̨̨
0.525, 0.025 +

(yi − θ)2

2

«
(5)

πt(θ|z1:γt) ∝ N
“
θ

˛̨̨
µ

(θ)
t , Σ

(θ)
t

”
(6)

where the parameters

Σ
(θ)
t =

"
tX

i=1

4X
j=1

zi,j

#−1

=

"
1/Σ

(θ)
t−1 +

4X
j=1

zt,j

#−1

(7)

µ
(θ)
t = Σ

(θ)
t

tX
i=1

yT zi = Σ
(µ)
t

“
µ

(θ)
t−1/Σ

(θ)
t−1 + yT zt

”
(8)

may be obtained recursively. Consequently, we can make use of
algorithm 2 to solve this problem. We use an instrumental uni-
form [−50, 50] prior distribution over θ. Some simulation results
are given in table 1. The estimate is taken to be the first moment
of the empirical distribution induced by the final particle ensemble;
this may be justified by the asymptotic (in the inverse temperature)
normality of the target distribution (see, for example, [2, p. 203]).

3.2. Stochastic Volatility

We take this more complex example from [4]. We consider the fol-
lowing model:

Zi = α + δZi−1 + σuui Z1 ∼ N
`
µ0, σ

2
0

´
(9)

Yi = exp

„
Zi

2

«
εi (10)

where ui and εi are uncorrelated standard normal random variables,
and θ = (α, δ, σu). The marginal likelihood of interest p(θ|y) is
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Fig. 1. Parameter estimates as a function of the inverse temperature.

available only as a high dimensional integral over the latent vari-
ables, Z and this integral cannot be computed.

In this case we are unable to use algorithm 2, and employ a vari-
ant of algorithm 3. The serial nature of the observation sequence
suggests introducing blocks of the latent variable at each time, rather
than replicating the entire set at each iteration. This is motivated by
the same considerations as the previously discussed sequence of dis-
tributions, but makes use of the structure of this particular model.
Thus, at time t, given a set of M observations, we have a sample of
Mγt volatilities, �γt� complete sets and M(γt − �γt�) which com-
prise a partial estimate of another replicate. That is, we use target
distributions of this form:

pt(α, δ, σ, zt) ∝p (α, δ, σ)

�γt�Y
i=1

p (y, zt,i|α, δ, σ)

× p
“

y1:M(γt−�γt�), z
1:M(γt−�γt�)
t,i

˛̨̨
α, δ, σ

”
,

where z
1:M(γt−�γt�)
t,i denotes the first γt −�γt� volatilities of the ith

replicate at iteration t.
Making use of diffuse conjugate prior distributions1 for θ en-

sures that the prior distributions are rapidly “forgotten”, leading to
a maximum likelihood estimate. Our sampling strategy at each time
is to sample (α, δ) from their joint conditional distribution, then to
sample σ from a Gibbs sampling kernel and to propose block-based
Metropolis-Hastings moves for the existing latent variables (using a
Kalman-filter and forward filtering / backward sampling proposal)
before proposing new volatilities using the same proposal strategy.

Considering a sequence of 250 observations and a temperature
scale which increases in a piecewise linear manner to a temperature
of 4 in 340 steps, using 250 particles we obtained estimates of the
three parameters, by the same mechanism as that used in the toy ex-
ample, of δ = 0.96±0.02, α = −0.25±0.01 and σ = 0.31±0.02
where the true values were δ = 0.95, α = −0.363 and σ = 0.26
(suggested by [4] as being consistent with empirical estimates for
financial equity return time series). Figure 1 shows the estimated
parameter values as a function of the number of observations incor-
porated. Figure 2 shows the volatility estimated by its posterior mean
under the empirical distribution of the final particle set – as the distri-
bution over θ converges to a point mass at the maximum likelihood

1i.e. uniform over the (−1, 1) stability domain for δ, standard normal for
α and square-root inverse gamma with parameters α = 1, β = 0.1 for σ.

-11

-10

-9

-8

-7

-6

-5

 0  50  100  150  200  250

lo
g 

V
ol

at
ill

ity

Time / steps

Reconstructed Volatility

True Volatility
Estimated Volatility

Fig. 2. Estimated volatility (dashed line) obtained using 250 parti-
cles and the true volatility (solid line).

value, this amounts to the conditional expectation of the volatility.
It is clear that a longer sequence and an annealing schedule

which reaches a lower temperature will have a likelihood of very
similar functional form with the only difference being that the la-
tent variables associated with each observation are replicated, rather
than there simply being a greater number of latent variables. Of
course longer series provide more information and hence allow bet-
ter estimates, indeed, with a sequence of length 1,000 and a final
temperature of 1, with just 100 particles, we obtained estimates of
α = −0.40 ± 0.14, σ = 0.28 ± 0.03 and δ = 0.95 ± 0.02.
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