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ABSTRACT

Many applications in signal processing lead to the optimiza-
tion problems

min ‖x‖1 subject to y = Ax,

and
min ‖x‖1 subject to ‖y − Ax‖ ≤ ε,

where A is a given d times n matrix, d < n, and y is a given
n × 1 vector.

In this work we consider �1 minimization by using LARS,
Lasso, and homotopy methods [1, 2, 3] (Efron et el., Tibshi-
rani, Osborne et al.). While these methods were first pro-
posed for use in statistical model selection, we show that un-
der certain conditions these methods find the sparsest solution
rapidly, as opposed to conventional general purpose optimiz-
ers which are prohibitively slow.

We define a phase transition diagram which shows how
algorithms behave for random problems, as the ratio of un-
knowns to equations and the ratio of the sparsity to equations
varies. We find that whenever the number k of nonzeros in the
sparsest solution is less than d/2log(n) then LARS/homotopy
obtains the sparsest solution in k steps each of complexity
O(d2).

1. INTRODUCTION

The problem we wish to solve is finding the sparsest solution
to an underdetermined system of equations:

(P0) min ‖x‖0 subject to y = Ax.

where y is observed data, A is a known, d× n matrix, d < n,
and x is an unknown vector in Rn, and ‖x‖0 represents the
number of non-zeros. This is a non-convex combinatorial op-
timization problem, and in general, finding the sparsest solu-
tion is NP hard. Therefore we solve the problem for the �1
norm [4]:

(P1) min ‖x‖1 subject to y = Ax.

Since d < n, in such settings, the system of equations y = Ax
is underdetermined, and the �1-norm minimization is a way

to regularize the solution. This problem can be cast as a stan-
dard linear program which is convex and tractable, and solved
using general purpose solvers such as simplex and interior
point methods [5] in order O(n3) which is slow for large scale
problems. When the solution is sufficiently sparse there exists
equivalence between the �1 and sparsest solutions [6].

There has been much interest in the statistical community
in fitting regression models while imposing a sparsity con-
straint on the regression variables. This leads to the formula-
tion of a minimization problem related to (P1),

(Lq) min ‖y − Ax‖2
2 subject to ‖x‖1 ≤ q.

The matrix Ad×n is implicitly assumed to have d > n, i.e.
representing an overdetermined linear system. Thus, the prob-
lem considered is a least-squares fit subject to an �1-norm
constraint on the variables; it is named Lasso by Tibshirani
[2]. In the signal processing community, it is known in its
augmented formulation

(Dλ) min ‖y − Ax‖2
2/2 + λ‖x‖1.

Problem (Dλ) is named Basis Pursuit Denoising (BPDN) by
Chen et al. [4]. It is equivalent to (Lq) under an appropriate
correspondence of parameters. If x̃λ is a solution to (Dλ)
for some λ ≥ 0, it also solves (Lq) for q = ‖x̃λ‖1. One
important distinction, perhaps, is that (Dλ) is studied in the
underdetermined setting, i.e. d < n.

In the d > n setting, Osborne, Presnell and Turlach (2000)
[3] and later Efron, Hastie, Johnstone, and Tibshirani (2004)
[1] developed an algorithm for solving (Dλ) for all λ ≥ 0
or (Lq) for all q ≥ 0. In detail, associate to each problem
(Dλ) : λ ∈ [0,∞) a solution x̃λ, then this identifies a polyg-
onal solution path {x̃λ : λ ∈ [0,∞)}, with xλ = 0 for λ large
and, as λ → 0, x̃λ converging to the solution of (P1). The ho-
motopy method of Osborne et al. [3], a.k.a the LARS/Lasso
algorithm of Efron et al. [1], follows the solution path by
jumping from vertex to vertex; it starts at x̃λ = 0 for λ large,
and then, in a sequence of steps, successively obtains the so-
lutions x̃λ�

at a special problem-dependent sequence λ� as-
sociated to vertices of the polygonal path. The name homo-
topy refers to the fact that the objective function for (Dλ) is
undergoing a homotopy from the �2 to the �1 objective as t
decreases.
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Recently, �1-norm minimization problems have attracted
attention [4, 7, 8, 9], with an eye to a range of important prac-
tical applications, particularly in conjunction with sparse rep-
resentation. Applications of (P1) have been proposed in the
context of time-frequency representation [4], overcomplete
signal representation [7], compressed sensing (CS) [10, 8],
and error-correcting codes (ECC) [9]. In such applications,
the underlying problem is to obtain a solution to y = Ax
which is as sparse as possible, in the sense of having few
nonzero entries. The above-cited literature shows that, when
the solution x0 of (P0) is sufficiently sparse, then the solution
of (P1) is either x0 or an approximation to it.

2. THE PHASE PLANE, BREAKDOWN CURVE, AND
SPARSITY PHASE TRANSITIONS

In this paper, we to bring to the fore the interplay between
indeterminacy and sparsity. First, a problem suite, is a collec-
tion S of (y, A) pairs obeying some common conditions, in
particular, all of the same problem size (d, n) and all having
a solution with at most k nonzeros. Second, for a given suite
S and algorithm A, we say that the breakdown curve exceeds
k if, for all members of the suite, the algorithm A succeeds.
The definition of success is that the algorithm correctly solves
(P1) and finds the sparsest solution. If the suite S is a collec-
tion of random problems, we apply the same terminology if
the algorithm is successful for a large fraction (rather than all)
members of the suite. Finally, given a collection of problem
suites, indexed by k, d, n, algorithm success/failure defines
regions in a three-dimensional space indexed by k, d, n. Ex-
perience shows that it is convenient to consider slices n =
constant, k and d varying. The two parameters k and d de-
termine the sparsity of x0 and the indeterminacy of the d × n
system of equations; it is convenient to re-express these in the
sparsity/indeterminacy ‘phase plane’ (δ, ρ), where δ = d/n
and ρ = k/d, and the interesting range is 0 ≤ δ, ρ ≤ 1. This
plane shows how algorithms behave, as the ratio of unknowns
to equations varies, but also the ratio of the sparsity to equa-
tions varies. In this paper, we describe algorithm performance
by identifying regions of this plane where a certain algorithm
is above or below a breakdown curve.

Theoretical results show that such a phase plane picture
makes sense, from the following viewpoint. Suppose as an
algorithm we consider a generic solver (P1), say, Michael
Saunders’ interior point PDCO [5]. As matrix ensemble, we
consider random matrices whose columns are uniformly dis-
tributed on the unit sphere. As problem suite, we consider
such d × n random matrices together with vectors y = Ax0

generated by vectors x0 with k randomly-sited nonzeros. Fig-
ure 1 (a) shows a phase plane defined by the relative error
‖x − x0‖2/‖x0‖2 with n = 500 and varying d and k. Evi-
dently, PDCO typically succeeds in recovering x0 (despite the
underdetermined system), provided the sparsity level is below
the superimposed curve. This curve is derived theoretically in

Fig. 1. (a) Empirical phase transition in the (ρ, δ) plane de-
fined by the relative error ‖x − x0‖2/‖x0‖2 with n = 500.
The solution x0 is recovered provided the sparsity level is be-
low the theoretical curve ρW . (b) Theoretical phase transition
in the (ρ, δ) plane. The solution x0 is recovered provided the
sparsity level is below the theoretical curve ρW .

[6, 11], which shows that for k < ρ(d/n)d(1 + o(1)), the �1

solution in such an ensemble also gives the sparsest possible
solution.

To further fix ideas, Figure 1 (b) displays a phase plane,
with several curves bounding different regions. The suites
being considered again involve random matrices A and vec-
tors y, and the phase plane is partitioned into several regions.
The highest region is marked Hard; in this region, the sparsest
solution to y = Ax is not very sparse, and finding the spars-
est solution requires solving (P0). This problem is NP-hard
in general. The Hard region is bounded below by the curve
ρW mentioned above. Below, the indicated curve, a general
solver for (P1) is a good procedure for finding the sparsest
solution. The second highest region is marked Ω(n3), which
means that in this regime, algorithms we discuss for solving
(P1) correctly find the sparsest possible solution require at
least O(d3) time. The next bounding curve is at d/(2log(n)),
and sits on top of a region labelled O(kd2). In this regime
there are algorithms which stop in k steps each one of which
costs O(d2).

In short, there are algorithms successful for finding the
sparsest solution in the lower two regions. Note that n is fixed
in this 2-D picture; as n increases, the upper curve ρW will
stay fixed, but the bottom curve is lower.

Borrowing terminology from statistical physics, we call
the boundaries between the indicated regions of such a dia-
gram phase transitions. In overview then, in this paper we
present algorithms which in certain conditions rapidly solve
(P1), and explain conditions under which this is possible us-
ing terminology associated with phase plane, breakdown curves,
and phase transitions.

3. PROPOSAL FOR SOLVING (P1)

The LARS, Lasso and homotopy methods described can be
implemented using already-published software [12]. A key
point here is that this software is not proposed for solving

III  637



linear programs as presented here; it is instead proposed for
solving problems of approximate modeling of noisy data. Our
contribution is to propose its use in a different setting.

Malioutov et al. [13] apply the homotopy method to the
formulation (Dλ) in the underdetermined setting, when the
data is noisy. We follow their ideas and suggest the following
scheme for solving (P1). We apply the homotopy method to
the noiseless data y = Ax. Follow the solution path from
0 = xt0 to x̃0. When the algorithm reaches the t = 0 limit,
(P1) is solved.

If the homotopy method stops in k steps, the work re-
quired is kd2; which is substantially less than the O(n3) work
required to solve a generic system of equations. So early stop-
ping of the homotopy method implies a fast solution. The ho-
motopy algorithm has the k-step solution property at a given
problem instance (y, A) if that instance y = Ax0 for some
k-sparse vector x0, and if the homotopy algorithm stops in at
most k steps.

The mutural coherence M(A) of a matrix A whose columns
are normalized to length 1 is the maximal off-diagonal entry
of the Gram matrix AT A. A matrix is incoherent if M(A)
is small, and the smallest it can be is 1/

√
d, [7, 14]. Such

matrices are somewhat like orthogonal matrices, but they can
be very non-square; we can have M(A) = 1/

√
d for ma-

trices which are d × d2. Consider the suite Sinc(d, n, µ, k)
of problems (y, A) involving matrices with M(A) ≤ µ and
involving left-hand sides y admitting sparse representation
y = Ax0 with ‖x0‖0 ≤ k. If k < (µ−1 + 1)/2, then the
homotopy algorithm has the k-step property. For example,
picking µ = 1/

√
d, we find that homotopy has the k-step

property for k <
√

d/2.

Suppose that A is a random matrix from the uniform spher-
ical ensemble. That is, the columns of A are uniformly dis-
tributed points on the unit sphere. As indicated above, such
matrices A are incoherent, but much more is true. To see this,
consider the setting where n and d are both large, tending to
infinity together in a proportional way: d = δn, 0 < δ < 1.
The parameter δ gives the limiting shape of the matrix A.
Since the matrix A has exchangeable columns, we may focus
attention on the situation where y = Ax0 and x0 has nonzeros
in the k positions 1, . . . , k. Fix ε > 0. Suppose that y = Ax0

where x0 has k nonzeros in the positions 1, . . . , k say, where

k ≤ d

2 log(n)
(1 − ε).

With overwhelming probability for large n the solution of the
minimum �1 problem (P1) is unique and is precisely x0, and
the homotopy algorithm runs k steps and stops, delivering the
solution x0. This d

2 log(n) ceiling is much stronger than the

result k ≤ √
d/8 log(n) implied by incoherence alone. Most

importantly for applications it is nearly proportional to d.

Fig. 2. (k, n) plane: The probability in which the number of
iterations until convergence is k for d = 200, k = 1 . . . 50,
and n = 200 . . . 16000.

Fig. 3. LARS (left) and LASSO (right) iterations/d for vectors
x0 with k nonzeros drawn from random uniform distribution
and matrices Ad×n from random signs ensembles, for n =
200.

4. EMPIRICAL EVIDENCE

We validate the property described above by exploring the
(k, n) space. We generate matrices Ad×n from the uniform
spherical ensemble for varying values of n and fixed d, and
vectors x with k non-zeros from a random uniform distribu-
tion. We then compute the observation y = Ax and solve the
problem given (A, y) using the homotopy method. We repeat
the experiment for each point in the (k, n) plane and compute
the number of times the property occurs. Figure 2 shows the
the probability of success for each value in the (k, n) plane
for d = 200, and k = 1 . . . 50 and n = 200 . . . 16000.

Figure 3 shows the number of iterations divided by d in
the ρ, δ plane, for a vector x0 from random uniform distribu-
tion with k non-zeros, and matrices Ad×n from random signs
ensembles. The curves overlaid show the derived theoreti-
cal �0/�1 phase transition ρW (δ) (in black); empirical �0 er-
ror boundary (in magenta); derived theoretical k-step phase
transition ρL = d/(2log(n)) (in red); and empirical k-step
boundary (dashed green). For LARS the Figure shows the
empirical d-step boundary (dashed cyan).

The number of LARS iterations to solution in the (k, n)
plane has a phase transition at the curve ρL = d/(2log(n)).
Below ρL the number of iterations to convergence is k.
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(a) (b)

Fig. 4. (a) Compressed sensing and (b) computation times.

5. APPLICATIONS

Finally, we present some practical results of important appli-
cations involving �1 minimization solved by LARS/homotopy
methods.

5.1. Compressed Sensing

The notion of Compressed Sensing [10, 15, 8], is that a signal,
compressible in a known basis, (e.g. wavelet or Fourier), is
reconstructed by �1 minimization from fewer measurements
than the nominal sampling density, provided that the sam-
ples are made on a specially transformed version of the sig-
nal. Roughly speaking, the samples measure linear function-
als which look like random linear combinations of the basis
functions. Figure 4 (a) shows a signal of length 210 (blue) re-
constructed (red) by compressed sensing from d = 180 sam-
ple using the LARS/homotopy method. Compressed sens-
ing computation time is 2.5 seconds by 258 iterations with
0.06 RMSE. Figure 4 (b) compares actual computation time
of PDCO and homotopy for compressed sensing with signal
lengths 2n for n = 10 . . . 15 on a standard PC running matlab.

5.2. Decoding Error Correcting Codes

Efficiently recovering a signal despite malicious errors [16]
can be formulated as solving a minimum �1 problem. For
large n which is divisible by 4 we generate a random orthogo-
nal matrix Un×n. Then form a matrix Ad×n with � 3n

4 	 by the
first d rows of U . Then generate its m = n−d by n orthocom-
plement B from the last m rows. In order to communicate a
block x of m pieces of information to a receiver we transmit
the noiseless signal S = BT x. The receiver gets the cor-
rupted signal r = BT x+z, and solves the minimum �1 prob-
lem: min ‖r − BT x‖1. Since ABT = 0, this is equivalent
to solving the minimum �1 problem: min ‖z‖1 subject to y =
Az, and then recovering the signal x̂ = B(r − ẑ). Figure 5
shows the recovered noise ẑ and reconstructed signal x̂ (red)
of length n = 210 by the LARS/homotopy method. Com-
putation time is 108.4 seconds by 269 iterations with RMSE
5.8e-8.
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Fig. 5. Decoding error correcting codes: (a) recovered noise
ẑ and (b) reconstructed signal x̂.
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