
THE PEP APPROACH: A NEW FAMILY OF METHODS SOLVING THE PHASE
ESTIMATION PROBLEM

Amar Kachenoura, Laurent Albera and Lotfi Senhadji

INSERM UMR 642, Laboratoire Traitement du Signal et de l’Image, Rennes, France
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ABSTRACT

Knowledge of the q-th (q>2) order spectrum of a linear non-
Gaussian process allows to reconstruct both the magnitude
and the phase of the corresponding input sequence. We pro-
pose in this paper a new family of phase retrieval algorithms,
based on higher order spectra, named PEP (Phase Estima-
tion using Polyspectra). These new algorithms are easier to
implement and use. Moreover, computer simulations show
that among them, the 4-PEP and the (3,4)-PEP algorithms ex-
hibit good performances facing classical methods especially
for bandlimited systems.

1. INTRODUCTION

System reconstruction and especially phase recovery play an
important role in various application areas. For instance, in
astronomy, high resolution imaging from ground-based tele-
scopes involves a phase recovery in order to overcome the
severe atmospheric degradation. Moreover, the phase estima-
tion problem also appears in radiocommunications, speech
processing and medical diagnosis and more particularly for
the use of blind source deconvolution based on frequency-
domain [1].

In this paper, we focus on the phase retrieval problem of
Single-Input Single-Output (SISO) systems whose input is an
i.i.d. non-Gaussian process. More particularly, we are in-
terested in the nonparametric methods. They can be divided
in two subcategories: those that utilize the whole bispectrum
(or polyspectrum) information [2] [3] and those that use only
some part of the polyspectrum [4] such as one or two fixed
One-Dimensional (1D) polyspectrum slices [5] [6] [7]. Al-
though some of the entire bispectrum methods [2] [3] pro-
vide the additional option of using a subset of the bispec-
trum, none of them supply a procedure for selecting the most
useful (in the sense of improved system estimates) bispec-
trum information. On the contrary, the algorithm of [6] pro-
poses such a procedure, wich can be applied to [5] too. This
selection procedure potentially allows one to avoid regions
where polyspectrum estimates exhibit high variance or re-
gions where the ideal polyspectrum is expected to be zero,
such as in the case of bandlimited systems.

Each of these methods suffers from limitations. To start
with, the methods that use the whole polyspectrum informa-
tion [2] [3] are generally more sensitive when systems are
bandlimited as shown in [6]. Besides, Rangoussi et al. [3]

and Lii et al. [7] have developed algorithms only for real sys-
tems. The algorithms proposed in [5] and [6] reconstruct the
phase only up to a linear-phase component corresponding to
an integer time delay. Besides, the method given in [5] does
not allow to process a linear process whose input sequence is
symmetrically distributed.

In order to overcome the limitations of the previous algo-
rithms, a new family of phase retrieval methods, named PEP
(Phase Estimation using Polyspectra), is proposed in this pa-
per. This latter, based on higher order spectra (polyspectra),
offers a panel of algorithms which are more straightforward
to implement and use. Moreover some methods of the PEP
family, such as the 4-PEP and (3,4)-PEP algorithms are more
robust in the case of bandlimited systems than existing meth-
ods.

2. NOTATIONS AND DATA STATISTICS

2.1. Problem Formulation

It is assumed throughout the paper that M (a priori complex)
samples of a discrete stochastic process are observed, and that
each random variable x(m) of the process satisfies the follow-
ing Linear Time Invariant (LTI) model:

x(m)=
∑
�∈�

h(�) s(m−�)+ν(m)=(h∗s)(m)+ν(m) (1)

where {s(m)}m∈� and {ν(m)}m∈� represent the input and
additive noise processes respectively, and where

h(�)
def
=

1

2π

∫ +π

−π

H(ω) e i ω� dω (2)

is the impulse response of the LTI system. Note that H(ω)
denotes its frequency transfer function.

Moreover, the following assumptions are placed on the
system and the signals involved.

A1. {s(m)}m∈� is an i.i.d. non-Gaussian, stationary and
ergodic process with components a priori in the com-
plex field;

A2. Noise {ν(m)}m∈� is stationary, ergodic, Gaussian wi-
th components a priori in the complex field too, and
independent of the input process;
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A3. All q-th (q > 2) order marginal source cumulants are
absolutely summable and all q-th order spectra are non-
zero in the frequency band over which the channel re-
sponse is nonzero (higher order cumulants and poly-
spectra will be described in section 2.2);

A4. The LTI system is stable (i.e. {h(m)}m∈� is absolutely
summable, which guarantees the existence of a boun-
ded frequency response) with a priori complex taps.

If we express:

H(ω) = |H(ω)| e iφh(ω) (3)

the phase retrieval problem is to blindly reconstruct the phase
response, φh(ω), of the LTI system, namely only from output
samples x(m).

2.2. Cumulants and spectra of q-th (q≥3) order

Denote as Cq−r
r, x (m, τ1, . . . , τq−1) the q-th (q ≥ 3) order cu-

mulant of x(m), defined by:

Cq−r
r, x (m, τ1, . . . , τq−1) = Cum{x(m), x(m+τ1), . . .,

x(m+τr−1), x(m+τr)
∗
, . . ., x(m+τq)

∗
} (4)

where r terms are not conjugated and q−r terms are conju-
gated. Note that in the presence of stationary sources, q-th
order cumulants do not depend on time m, so they can be
denoted by Cq−r

r, x (τ1, . . . , τq−1). Nevertheless, if sources are
cyclostationary, cycloergodic, potentially non zero-mean, q-
th order continuous-time temporal mean statistics have to be
used instead of (4), as described in [8]. For the sake of conve-
nience, we will consider only the stationary case in the sequel
as announced by assumptions (A1) and (A2).

Under assumption (A3), the q-th order spectrum (polys-
pectrum) is given by the (q−1)-dimensional Discrete Fourier
Transform (DFT) of the q-th order cumulant [4]. Besides,
it can be obviously shown using equation (4), assumptions
(A1), (A2) and the multilinearity property under changes of
systems, shared by all moments and cumulants, that the q-th
order spectrum of the output x(m) may be written as follow-
ing:

Γq−r
r, x (ω1, . . . , ωq−1) = Cq−r

r, s H(−ω1 − . . . − ωq−1)

H(ω1) . . .H(ωr−1)H(−ωr)
∗
. . .H(−ωq−1)

∗ (5)

where Cq−r
r, s

def
= Cq−r

r, s (0, . . . , 0) denotes the q-th order mar-
ginal source cumulant associated with null delays.

Generally, using the well-known Leonov-Shiryaev formu-
la, q-th order cumulants (4) are computed from moments of
order smaller than or equal to q. [8] illustrates the Leonov-
Shiryaev formula for q = 4 and q = 6. However, in practice,
moments and cumulants can not be exactly computed; they
have to be estimated from samples x(m). If the sources are
stationary and ergodic, sample statistics may be used to esti-
mate moments, and consequently to estimate cumulants (4),
via the Leonov-Shiryaev formula. Next, polyspetrum estima-
tion is achieved using the DFT (see [4] for details).

3. ALGORITHMS

We present in this section a new family of algorithms, the PEP
(Phase Estimation using Polyspectra) family, which allows to
reconstruct the phase response of the system up to an additive
constant. This family includes, on the one hand, the q-PEP
methods, which exploits the q-th order spectrum (q≥3), and,
on the other hand, the (q1, q2)-PEP methods, based both on
q1-th and q2-th order spectra (q2 >q1≥3).

3.1. The q-PEP methods (q≥3)

The approach is presented using as example the spectrum of
third order (q = 3), well known as bispectrum. An extension
to q-th order (q >3) spectra is straightforward and thus omit-
ted for the sake of convenience.

For q=3 and r=2, equation (5) obviously becomes:

Γ1
2, x(ω1, ω2) = C1

2, s H(−ω1 − ω2)H(ω1)H(−ω2)
∗ (6)

In equation (3) we have defined the phase response, φh(ω),
of the LTI system. Now let ψ1

2, x(ω1, ω2) be the phase of
the output bispectrum Γ1

2, x(ω1, ω2). In the sequel, we con-
sider discrete frequencies, i.e., ωi = (2π/N)ki with ki ∈
{0, . . . , N−1}. Then, omitting factor 2π/N , the relation be-
tween the phases of the quantities involved in (6) can be writ-
ten as:

ψ1
2, x(k1, k2)=φh(−k1−k2)+φh(k1)−φh(−k2)+ξ1

2, s (7)

where ξ1
2, s is the phase associated with the marginal source

cumulant C1
2, s. Note that for a source in the real field, ξ1

2, s is a
multiple of π. Moreover, the 2π-periodicity of H(ω) implies
the N -periodicity of its discrete phase φh(k). So, summing
(7) over the discrete frequencies k2 (0≤k2 <N ), we have for
each discrete frequency k1 (0≤k1 <N ):

N−1∑
k2=0

ψ1
2, x(k1, k2) = N

(
φh(k1) + ξ1

2, s

)
(8)

which implies that φh(k) can be computed from the bispec-
trum phase. However, even if equation (8) provides a solution
for φh(k1) from ψ1

2, x(k1, k2), it is not a convenient formula
for phase retrieval. Indeed, the bispectrum phase ψ1

2, x(k1, k2)

is generally estimated by its principal value, ψ̃1
2, x(k1, k2) =

arctan
(
�

(
Γ1

2, x(k1, k2)
)
,�

(
Γ1

2, x(k1, k2)
))

where � and �
refer to the real and imaginary parts, and arctan is the four-
quadrant arc tangent operator where angles ψ̃1

2, x(k1, k2) (0≤
k1, k2 < N ) lie between ±π radians. These principal val-
ues are also called wrapped phase values because the absolute
phase is wrapped into the interval ] −π, π ] by the following
nonlinear process:

ψ̃1
2, x(k1, k2) = ψ1

2, x(k1, k2) + 2πI(k1, k2) (9)

where I(k1, k2) is an integer function such that ψ̃1
2, x(k1, k2)

belongs to ] −π, π ]. Thus, summing (9) over the discrete
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frequencies k2 (0≤k2 <N ) and using (8), we have:

N−1∑
k2=0

ψ̃1
2, x(k1, k2) = N

(
φh(k1) + ξ1

2, s

)
+ 2πJ(k1) (10)

where the integer function J(k1) is given, for 0≤k1 <N , by

J(k1)
def
=

∑N−1
k2=0 I(k1, k2). The phase function φh(k) can

thus be extracted from equation (10). Nevertheless, phase
unwrapping has to be achieved before extraction. Simply
stated, the phase unwrapping problem is concerned with ob-
taining an estimate for a continuous function from its wrapped
form. Applying a Two-Dimensional (2D) phase unwrapping
scheme [9] to ψ̃1

2, x(k1, k2) allows to determine an estimate,

ψ̃1,u
2, x(k1, k2), of ψ1

2, x(k1, k2) up to an additive constant such
that:

N−1∑
k2=0

ψ̃1,u
2, x(k1, k2) = N

(
φh(k1) + ξ1

2, s + 2πIu

)
(11)

where Iu is an unknown integer constant. An estimate, φ̃h(k),
of φh(k) can thus be achieved using the following scheme:

φ̃h(k1)
def
=

1

N

N−1∑
k2=0

ψ̃1,u
2, x(k1, k2) = φh(k1) + a (12)

where constant a is given by a = ξ1
2, s+2πIu. This approach

will be referred, in the sequel, to as the 3-PEP2D method. On
the other hand, a One-Dimensional (1D) phase unwrapping
process may be sufficient to solve our problem. Indeed, ap-
plying it to the left term of equation (10) and dividing the
result by N , we obtain a new estimate, φ̃h(k), of φh(k) given
by (12) where now a = ξ1

2, s +(2πJu) /N and Ju is an un-
known constant. This latter approach will be referred in the
sequel to as the 3-PEP1D algorithm. Then the 3-PEP concept
may be easily extended to q-th order spectra (q > 3), which
is necessary, for instance, in the presence of a symmetrically
distributed input. In addition, note that the q-PEP method,
for q > 3, exploits only one 2D-slice of the output q-th or-
der spectrum. A simple measure of 2D-slice ”goodness” can
be derived from the one presented in [6] and referred to as
the frequency content. On the other hand, since a q-th order
spectrum (q > 3) may contain several 2D-slices of sufficient
goodness, an improved final phase estimate can be obtained
by averaging. Moreover, this averaging should be done in the
ei· domain just before the division by N .

3.2. The (q1, q2)-PEP methods (q2 >q1≥3)

The originality of this algorithm is the joint exploitation of the
2D-slice of two polyspectra of different order. As example,
the method is presented in this section using the third (q1 = 3)
and the fourth (q2 = 4) order spectra of the observations. The
extension to (q1, q2)-th order, such asq2 >q1≥3, can also be
easily realized from the following discussion.

For (q2, r2) = (4, 2), the equation (5) implies:

ψ2
2, x(k1, k2,−k3) = φh(−k1 − k2 + k3) +

φh(k1) − φh(−k2) − φh(k3) + ξ2
2, s (13)

where ψ2
2, x(k1, k2,−k3) is the phase of the discrete output

trispectrum Γ2
2,x(k1, k2,−k3) and ξ2

2, s is the phase associated
with the marginal source cumulant C2

2, s. Based on the differ-
ence between equation (7) and equation (13), we get:

ψ1
2, x(k1, k2) − ψ2

2, x(k1, k2,−k3) =ξ1
2, s − ξ2

2, s−

φh(−k1−k2+k3) + φh(−k1 − k2) + φh(+k3). (14)

Next, k1 has to be fixed, using for instance the frequency con-
tent [6], to a given frequency α (0 ≤ α < N ). Summing up
(14) over all discrete frequencies k2 (0≤k2 <N ), we get:

∑N−1
k2=0

(
ψ1

2, x(α, k2) − ψ2
2, x(α, k2,−k3)

)
=

N
(
φh(k3) − ξ2

2, s + ξ1
2, s

) (15)

Therefore, the phase response, φh(k), can be estimated by
the joint exploitation of the 2D-slice of two polyspectra of
different order. However, as shown in the previous section,
the output polyspectrum phases are estimated through their
principal values. To obtain the true phases up to an additive
constant, we must perform an additional step of phase un-
wrapping. This problem can be resolved at least in two differ-
ent ways. The first one is to applying a 1D phase unwrapping

to
∑N−1

k2=0

(
ψ̃1

2, x(α, k2)−ψ̃2
2, x(α, k2,−k3)

)
. This method will

be referred to as the (3, 4)-PEP1D algorithm. The second one,
is to applying a 2D phase unwrapping to ψ̃2

2, x(α, k2,−k3) be-
fore summing over all discrete frequencies k2. This approach
will be named the (3, 4)-PEP2D method in the sequel.

4. COMPUTER SIMULATIONS

Two computer experiments show the performances of the PEP
family (more particularly through the 3-PEP2D, 4-PEP2D and
(3, 4)-PEP2D methods) and some efficient phase retrieval te-
chniques (Petro/Pozi [5], 3-Pozi/Petro [6] using the data bis-
pectrum and 4-Pozi/Petro [6] using the data trispectrum) for
bandlimited systems. Note that Pozidis and Petropulu have
demonstrated in [6] via simulations the superiority, in terms
of estimation bias and variance, of the Pozi/Petro methods
over the approaches proposed in [2] and [3] in the case of
bandlimited systems. So we did not implement these two
latters. In fact, the input source used in the first experiment
was a stochastic process with zero-mean i.i.d. exponentially
distributed random variables whereas, in the second exper-
iment, it was a Binary Phase Shift Keying (BPSK) source
in baseband with a square transmit filter and a symbol rate
equal to the sample rate. Consequently, since the i.i.d. expo-
nential process has a non zero skewness, the first experiment
allows to compare the performances of the 3-PEP2D, (3,4)-
PEP2D, Petro/Pozi and the 3-Pozi/Petro algorithms. On the
other hand, since the BPSK is symmetrically distributed, the

III ­ 630



trispectrum of the observation was used in the second experi-
ment permitting to compare the performances of the 4-PEP2D

and the 4-Pozi/Petro methods. Besides, in both experiments,
we generated a nonminimum-phase, bandlimited filter whose
impulse response is given by:

h(�)=0.77|2�|cos(1.96π�)+0.8(0.65)|2�| sin(1.52π�+
π

5
)

and the input process had an SNR (Signal to Noise Ratio) of
15 dB. Eventually, the simulation results are averaged over
200 realizations.

Figure 1 displays, for a number of 1024 samples, the true
impulse response (solid line) of the bandlimited filter, along
with the mean of the impulse response (dotted line) recovered
by five methods (namely Petro/Pozi, 3-Pozi/Petro, 3-PEP2D,
3-Pozi/Petro and 4-PEP2D). The yellow (or gray for a black
and white printing) area denotes the standard deviation. Fig-
ure 1(a) presents the simulation results associated with the
first experiment whereas figure 1(b) shows those correspond-
ing to the second experiment. Note that the recovered impulse
responses were computed in time-domain from the true filter
magnitude combined with the recovered phase. Moreover, the
frequency content presented in [6] was previously performed
for each method in order to select the suitable 1D or 2D-slice.
Figure 1 shows the good performances of the PEP family fac-
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Fig. 1. Phase recovery for 1024 samples and a SNR of 15dB.

ing the other methods. Indeed, it can be seen that the PEP
methods perform better especially in terms of variance.

Figures 2(a) and 2(b) display the variations of the NMSE
(Normalized Mean Square Error) criterion at the output of the
six methods (namely the previous ones and the (3,4)-PEP2D

method) as a function of the number of samples, correspond-
ing to both experiments respectively. In both cases, the fast
decay of NMSE can be observed for the PEP methods.
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Fig. 2. Variations of NMSE as function of the sample number.

5. CONCLUSION

We presented in this paper a new family of phase retrieval al-
gorithms named the q-PEP (q≥3) and (q1, q2)-PEP (q2 >q1≥
3) methods. These algorithms use one or two 2D-slices of
polyspectra of the output observations. The computer results
show the good performances of this new class of methods in
the presence of band limited system, especially facing classi-
cal algorithms. Moreover, inside the PEP family, the q-PEP
methods seem to perform better than the (q1, q2)-PEP meth-
ods. However, the works in progress show that the (q1, q2)-
PEP methods are less sensitive to the choice of the 2D-slice.
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