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ABSTRACT

Our contribution deals with blind deconvolution of sparse
spike trains. More precisely, we examine the problem in the
Markov chain Monte-Carlo (MCMC) framework, where the
unknown spike train is modeled as a Bernoulli-Gaussian pro-
cess. In this context, we point out that time-shift and scale
ambiguities jeopardize the robustness of basic MCMC meth-
ods, in quite a similar manner to the label switching effect
studied by Stephens (2000) in mixture model identification.
Finally, we propose proper modifications of the MCMC ap-
proach, in the same spirit as Stephens’ contribution.

1. INTRODUCTION

The problem of the restoration of sparse spike trains distorted
by a linear system and additive noise arises in many fields
such as seismic exploration [1–3], and non-destructive eval-
uation [4]. It is classically dealt with a discrete-time noisy
convolution model for the observations:

z = h � x + ε, (1)

where h is the impulse response (IR) of the system (assumed
finite here), x is the sparse spike train to be restored and ε
is a stationary white Gaussian noise.

The deconvolution problem is said blind when the IR h is
unknown. In the present study, we will assume that param-
eters such as the noise variance are also unknown. It is clear
however that some statistical information must be available,
at least to distinguish the input signal from the IR. Here, we
adopt a Bernoulli-Gaussian process (BG) for x, following [1]
and many posterior contributions such as [2–4]. Moreover,
we adopt a Markov chain Monte-Carlo (MCMC) approach,
akin to that of [2].

Blind deconvolution is a fundamentally information-defi-
cient issue: since h � x is equal to (f � h) � (f−1 � x) for
any invertible filter f , the solution of a blind deconvolution
problem is not unique. Here, the BG prior helps to raise the
main ambiguities, but there remain the following ones:

• Scale ambiguity: h � x = (ah) � (x/a), ∀a �= 0.

• Time-shift ambiguity: h � x = (dτ � h) � (d−τ � x),
∀τ ∈ �, where dτ is the time delay filter of τ samples.

Such ambiguities must be taken into account. Otherwise,
classical estimators for h and x such as posterior expectations
(as typically approximated by MCMC computations) become
meaningless, as averaged quantities over the variations of a
and τ .

Whereas the scale ambiguity is rather easily raised by an
arbitrary scaling, the time-shift ambiguity is more difficult to
handle within the MCMC framework. In [2], it is simply cir-
cumvented by constraining the maximum of h to a prescribed
position. However, as discussed in Section 5, such a solution
is not always satisfying (see also Section 7).

The potential effect of time-shifts can be compared to the
label-switching effect dealt by Stephens in [5] in the case of
mixture model identification. It is our goal here to analyze
the time-shift effect and to compensate for it, in the same
spirit as Stephens’ contribution.

The formulation of the blind deconvolution problem is
presented in Section 2. Section 3 introduces the fully Bayesian
framework. A Gibbs sampling scheme quite similar to that
of [2] is proposed in Section 4. Sections 5 and 6 contain
our main contributions: Section 5 examinates the time-shift
problem, and Section 6 proposes an hybrid Gibbs sampler to
compensate for it. The proposed method is compared to the
method of [2] in Section 7, and conclusive remarks are made
in Section 8.

2. PROBLEM STATEMENT

Let z = {z1, z2, . . . , zN}, h = {h0, h1 . . . , hP }, and x =
{x1, x2 . . . , xM}. Here, we adopt a“zero boundary”condition:
the input coefficients xm are assumed to vanish for all m < 1
and m > M), so that N = M + P . The length P of the
unknown wavelet is assumed to be available in the sequel.

3. BAYESIAN APPROACH

3.1. Prior laws

The unknown input signal x is modeled as a BG sequence:

qm ∼ Bi(λ), (xm | qm) ∼ N (0, qmσ2
1), (2)

where Bi(λ) is the Bernoulli law of parameter λ, so that
p(qm = 1) = λ. For the sake of simple notations, “p” will
indifferently denote probabilities, probability densities, and
products of the two. Moreover, random variables will not be
distinguished from their realizations. With such simplified
notations, we have

p(q, x |λ, σ2
1) = p(q |λ) p(x | q, σ2

1)

= λL (1 − λ)M−L
Y

m,qm=1

g(xm; σ2
1)

Y
m,qm=0

δ(xm),
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where L =
PM

m=1 qm and g(· ; A) stands for the zero-mean
Gaussian density of covariance A.

We also assume that ε is a Gaussian white noise with
unknown variance σ2:

ε ∼ N `
0, σ2IN

´
, (3)

where IN is the identity matrix of size N .
Within our fully Bayesian framework, prior laws are also

needed for h and for the hyperparameters. Our choices are
much similar to those found in [2]:

• h has a Gaussian prior of known variance:

h ∼ N `
0, σ2

hIP+1

´
. (4)

• The noise variance σ2 follows an inverse gamma prior
IG(ν, η) with known parameters ν, η > 0.

• λ is assigned a beta law Be(a, b) with known parame-
ters a, b > 0.

Finally, we assume that σ2
1 is a known constant. For instance,

we can take σ2
1 = 1. This assumption is not restrictive be-

cause of the scale ambiguity

h � x = (±σ−1
1 h) � (±σ1x), ∀σ1 > 0.

3.2. Joint posterior law

Let θ = (q, x, h, λ, σ2). Given our previous assumptions, the
joint posterior probability reads [2]:

p(θ | z) = g(z − h � x ; σ2IN ) p(θ)/p(z), (5)

with p(θ) = p(q |λ) p(x | q) p(λ) p(h) p(σ2).

4. GIBBS SAMPLING

Using conditional posterior laws, the Gibbs sampler generates
a Markov chain of random samples θ(k) whose equilibrium
law coincides with the joint posterior law [6]. For the sake of
simplicity, the iteration number k is omitted. The following
conditional posterior laws can be deduced from (5) (see also
[2]):

1 Let r = {z, θ} \ {qm, xm}. Then, (xm | r) follows a BG
law with a nonzero mean:

(qm | r) ∼ Bi(λ1,m), (xm | qm, r) ∼ N (µ1,m, qmσ2
1,m)

with

λ1,m =
eλ1,meλ1,m + 1 − λ

, eλ1,m = λ
σ1,m

σ1
exp

„
µ2

1,m

2σ2
1,m

«
,

σ2
1,m =

σ2σ2
1

σ2 + σ2
1 ‖h‖2 , µ1,m =

σ2
1,m

σ2

PX
i=0

hiem+i,

where en = (z − h � x)n + hn−mxm.

2 Let r = {z, θ} \ {h}. Then (h | r) ∼ N (m, R) with

R =
`
σ−2XtX + σ−2

h IP+1

´−1
, m = σ−2RXtz, (6)

where X is the Toeplitz matrix of size N ×(P +1) with

first row [x1 0P ] and first column
ˆ
xt 0P

˜t
.

3 Conditionally to all other variables, the law of σ2 is

IG(N/2 + ν, ‖z − h � x‖2 /2 + η).

4 Conditionally to all other variables, the law of λ is

Be (a + L, b + M − L), with L =
PM

m=1 qm.

The Gibbs sampler iterates steps 1 - 4 , all of which corre-
sponding to classical sampling operations.

5. DEALING WITH TIME-SHIFT AND SCALE
AMBIGUITIES

5.1. Principle

In [2], it is proposed to raise the time-shift ambiguity by con-
straining the maximizer of h to a given position i∗:

Time constraint [2]: |hi∗ | = max
i

|hi| (7)

In practice, the sampling procedure is only slightly modified:
Step 2 is repeated until constraint (7) is met. The following
constraint is also introduced to deal with scale ambiguity:

Scale constraint [2]: h0 = 1. (8)

The resulting posterior mean estimates can then be approxi-
mated by averages over the last K − D samples:

θ̂ =
1

K − D

KX
k=D+1

θ(k)

Enforcing conditions (7)-(8) is typical of the identifiability
constraint approach, whose limitations are underlined in [5]
in the context of label-switching.

In particular, the scale constraint h0 = 1 is not always
appropriate: if the true value of h0 vanishes (or nearly so),
such a constraint will be artificial and unsuited to impose a
common dynamic to the samples (h(k)).

Similarly, condition (7) will be ineffective when the max-
imum magnitude maxi |hi| of the true response is reached
at several positions. There is another more specific draw-
back in imposing (7): a slight error in positioning i∗ may
yield severely degraded estimation results, as checked in Sec-
tion 7. The reason is the following: in contrast with the per-
fect label-switching effect, where all label permutations are
equally likely, different values of time-shifts do not yield per-
fectly equivalent solutions, because both h and x are defined
as finite length vectors. In particular, the shape of the IR will
no longer fit the time window {0, 1, . . . , P} after an arbitrary
time-shift.

Following [5], we propose to get rid of constraints on the
sampler. We rather cope with time ambiguities by shifting the
samples (h(k), x(k)) w.r.t. the time index, prior to computing
averages. Scale ambiguities are dealt simultaneously, in the
same spirit.

5.2. Scaling-shifting algorithm

Once a series of random samples θ(1), . . . , θ(K) is available,
the question is to compute appropriate averages to estimate
the unknown quantities. Usual averages are suited for scalar
parameters λ and σ2. Only the series (h(k)) and (x(k)) may
be affected by time-shifts and scale fluctuations.
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To compensate for label switching in mixture model iden-
tification, Stephens proposes a relabelling algorithm. The
principle is to find the best permutation for each sample, in
the sense of a well-chosen loss function to be minimized [5].

In the same spirit, we propose a scaling-shifting algorithm
to remove the time and scale ambiguities in the series (x(k))

and (h(k)). Let the following loss function:

R(h, a, τ ) =
1

K − D

KX
k=D+1

‖h − ak dτk � h(k)‖2,

to be minimized w.r.t. h, a, τ . We are led to a combinatorial
problem, for which we propose a suboptimal solution inspired
from [5, Algorithm 4.1]. Each iteration of the following two-
step scheme reduces R(h, a, τ ) until a fixed point is reached:

1. For all k = D + 1, . . . , K, choose (ãk, τ̃k) as the mini-

mizer of ‖h̃ − ak dτk � h(k)‖2 when h̃ is held constant.

2. Choose h̃ as the minimizer of R(h, ã, τ̃ ), i.e.,

h̃ =
1

K − D

KX
k=D+1

ãk dτ̃k � h(k).

Step 1 yields (ãk, τ̃k) as a matched filtering solution with

reference to h̃, while Step 2 updates h̃ as the average of the
scaled, shifted versions of h(k). We propose to initialize the
procedure by h̃ = h(K). Convergence is observed after a few
iterations.

The procedure applies to (h(k)), since our loss function is
defined as a function of h only, but it also provides corrections
for (x(k)), from which an estimated input signal is computed:

x̃ =
1

K − D

KX
k=D+1

1

ãk
d−τ̃k � x(k). (9)

6. HYBRID GIBBS SAMPLING

6.1. Metropolis-Hastings within Gibbs sampling

In practice, removing constraints (7)-(8) in favor of our scaling-
shifting scheme is not sufficient to provide a fully satisfying
procedure. There is still an issue to deal with: the Gibbs
sampling procedure of Section 4 scarcely produces any time-
shifts. As a consequence, the estimates produced after the
scaling-shifting procedure will be strongly influenced by the
initialization of the Gibbs procedure: typically, the position
of the maximum value of h(0) nearly plays the role of i∗ in
constraint (7).

It is actually quite easy to cope with such a deficiency
by slightly modifying the Gibbs sampler of Section 4 in order
to stimulate time-shifts. Our proposition only affects Step
2 . Instead of merely resampling h according to its posterior
law, we envisage a Metropolis-Hastings (MH) procedure in-
volving both h and (q, x). To simplify notations in the whole
section, we drop dependence of probability terms on current
parameter values λ(k), σ(k), and we use θ as a shorthand for
(q, x, h). Let us define the proposal kernel of the MH step as
π(θ′ | z, θ) = p(h′ | q′, x′, z) π(q′, x′ | q, x), where

π(q′, x′ | q, x) =

8><
>:

1 − 2α if (q′, x′) = (q, x),

α if (q′, x′) = (Cq,C−1x),

α if (q′, x′) = (C−1q,Cx),

with C defined as the right circular shift operator, and α ∈
(0, 1/2). With probability 1 − 2α, the MH procedure boils
down to Step 2 . Otherwise, a time-shift of ±1 is proposed.
Circular shifting provides a good trade-off between easy im-
plementation and a fair acceptation probability. According
to our “MH within Gibbs” sampler, Step 2 is replaced by:

2 Propose θ′ according to π(θ′ | z, θ(k)). Accept θ(k+1) =

θ′ with probability min{1, ρ(z, θ(k), θ′)}, where

ρ(z, θ, θ′) =
π(θ | z, θ′)
π(θ′ | z, θ)

p(θ′ | z)

p(θ | z)
. (10)

Otherwise, let θ(k+1) = θ(k).

Let us establish a simple expression for ρ(z, θ(k), θ′).

6.2. Acceptation probability

According to π(q′, x′ | q, x) = π(q, x | q′, x′), (10) reads

ρ(z, θ, θ′) =
p(h | q, x, z)

p(h′ | q′, x′, z)

p(h′ | q′, x′, z)

p(h | q, x, z)

p(q′, x′ | z)

p(q, x | z)

=
p(q′, x′ | z)

p(q, x | z)
.

Then, according to p(q′, x′) = p(q, x), (10) also reads

ρ(θ, θ′, z) =
p(z | q′, x′)
p(z | q, x)

=
p(z |x′)
p(z |x)

, (11)

which shows that ρ(θ, θ′, z) depends neither on h nor on h′.
Moreover, x′ = x implies ρ(θ, θ′, z) = 1, as expected.

In all cases, it is easy to establish that ρ(θ, θ′, z) is the
ratio of two Gaussian densities. More precisely, it can be
deduced from (1), (4) and (3) that (z |x) ∼ N (0, P−1), with

P = (σ2IN + σ2
hXXt)−1 = σ−2IN − σ−4XRXt.

given the matrix inversion lemma. Hence,

2 ln ρ(θ, θ′, z) = zt(P − P′)z + ln |P−1P′|
= (m′)t(R′)−1m′ − mtR−1m + ln |R−1R′|,

where we make use of the matrix inversion lemma again. The
latter expression can be evaluated in O(P 2) operations given
that matrices R, R′ are Toeplitz.

7. SIMULATION RESULTS

A simulation is proposed to compare the original MCMC
method of [2] with our modified approach incorporating the
MH step and the scaling-shifting procedure. It is based on
an example found in [2]. An IR of order P = 40 is defined by
h = h∗/h∗

0, with h∗
i = sin(π(i + 1)/6.4) exp(−0.12 |i − 9|).

The input signal x is generated from a BG law (2) with
λ = 0.1 and σ2

1 = 4. The observed signal is obtained from
(1) for N = 2000 and σ2 = 1, which corresponds to a signal-
to-noise ratio of 18.6dB. The parameter values for the priors
are taken from [2]:

h ∼ N (0, 100 IP+1) , λ ∼ Be(10, 50), σ2 ∼ IG(1, 0.3),

as well as the initial values: σ(0) = 1, x(0) = 0, λ(0) = 0.1.
Both sampling schemes were carried out for 4000 iterations,
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and only the last 1000 samples were considered to compute
estimates.

The robustness of the method presented in [2] is tested
by assuming a slight error in the position of the maximizer
i∗ = arg maxi |hi|: i∗ = 6 is considered instead of i∗ = 9.

Accordingly, h(0) is chosen as a Kronecker function at i = 6,
instead of i = 9. Figure 1(a) shows that the left part of the

resulting estimate ĥ is slightly altered, but the consequence
on the estimated input x̂ is a more severe degradation as
shown in Figure 1(b). The corresponding estimated value of

λ is λ̂ = 0.18, which significantly differs from the true λ = 0.1,
while the noise variance is rather well estimated σ̂2 = 1.13.

0 5 10 15 20 25 30 35 40
6

4

2

0

2 (a)

0 200 400 600 800 1000 1200 1400 1600 1800
5

0

5 (b)

Fig. 1. Application of the standard MCMC method found in
[2], tested with an error of −3 time samples on the position
of i∗ = arg maxi |hi|. The circles indicate true values. (a)

Estimated IR ĥ after proper scaling. (b) Estimated BG x̂
signal after proper scaling.

When tested in the same conditions, our modified MCMC
method clearly shows a better robustness according to Fig-
ure 2. The estimated value of λ is now λ̃ = 0.099 while the
noise variance is still well estimated σ̃2 = 1.07. Table 1 pro-
vides additional information about the frequency of accepted
shifts within the MH step of Subsection 6.1. During the first
200 iterations, nearly 20% of right shifts are accepted, because
the algorithm compensates for the initialization of the IR as

0 5 10 15 20 25 30 35 40
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2 (a)

0 200 400 600 800 1000 1200 1400 1600 1800
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Fig. 2. Proposed modified MCMC method in the same con-
ditions as in Figure 1, with α = 0.1. The circles indicate
true values. (a) Estimated IR h̃ after proper scaling. (b)
Estimated BG x̃ signal after proper scaling.

a Kronecker function at the left of the time domain. Then
the proportion of accepted left and right shifts gets balanced,
at about 7%. After the burn-in, the proportion is below 4%,
which does not mean that our MH procedure is not efficient,
but rather that the correct position of the IR is significantly
more probable than the others.

Sample index k ∈ [1, 200] [201, 3000] [3001, 4000]
# of proposed right shifts 22 267 76
# of accepted right shifts 4 20 3
# of proposed left shifts 9 277 98
# of accepted left shifts 1 19 3

Table 1. Number of proposed and accepted shifts at different
stages of the MH algorithm.

8. DISCUSSION

In this paper, we have pointed out that time and scale ambi-
guities jeopardize the robustness of basic MCMC methods ap-
plied to sparse blind deconvolution problem. We have estab-
lished a formal link between this issue and the label switch-
ing effect studied by Stephens in [5]. We have proposed to
introduce some modifications in the light of Stephens’ con-
tribution. The proposed method is based on an “MH within
Gibbs” sampler, and estimation of the unknowns are only ob-
tained after an operation of scaling-shifting on the generated
samples. The additional cost is negligible compared to a more
standard application of the MCMC approach, as found in [2],
while it is no more necessary to assume that the position of
the maximum value of the IR is known in advance.

Our main perspective is to consider an IR h of unknown
length. In our opinion, the present contribution is a prerequi-
site step towards estimating the length of h, since it provides
a robust way of letting the IR make best use of the alloted
time window. Different window lengths could then be ex-
plored, for instance using a reversible jump procedure.
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