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ABSTRACT

In this paper, we propose a new method for designing over-
sampling ∆Σ DA converters via H∞ optimization. The de-
sign consists of two steps. One is that for ∆Σ modulators.
In ∆Σ modulators, the accumulator 1/(z−1) is convention-
ally used in a feedback loop to shape quantization noise. In
contrast, we give all stabilizing feedback filters for the mod-
ulator, and propose an H∞ design to shape the frequency re-
sponse of the noise transfer function (NTF). The other is a
design for interpolation filters in oversampling DA converters.
While conventional designs are executed in the discrete-time
domain, we take account of the characteristic of the original
analog signal by using sampled-data H∞ optimization. A de-
sign example is presented to show that our design is superior
to conventional ones.

1. INTRODUCTION

∆Σ modulators are widely used in high-resolution AD or DA
converters. They are applied to measurement, digital audio
processing and wireless communications (see [1, 2]). In com-
bination with oversampling technique, ∆Σ AD or DA con-
verters can have high resolution despite a coarse (by usual
one-bit) quantizer.

∆Σ modulators reduce quantization noise by linear filters
in feedback loops, which are designed to shape the frequency
characteristic of the noise transfer function (NTF). The design
is commonly done by assuming that the quantization noise
is white, and independent of the input signal. Although the
assumption is not strictly valid, the method leads to a linear
model. We can then adopt linear system theory, in particular,
frequency domain approach. Noise shaping in the frequency
domain can be executed by the established H∞ optimization,
and hence such a linear model will be useful to design ∆Σ
modulators. Moreover, attenuating the H∞ norm of the NTF
leads the stability of binary (1-bit) (Lee criterion[3, 2]) and
multi-bit (see section 2.3) modulators.
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Fig. 1. ∆Σ modulator

Then, we propose a new design method of ∆Σ DA con-
verters. Since DA converters involve both continuous- and
discrete-time signals, it is necessary for analysis and design
to take the characteristics of both of them into account. For
this purpose, the sampled-data control [4] is an optimal tool.
In the last few years, several studies have been made on dig-
ital signal processing via sampled-data control theory [5, 6].
Based on these studies, we propose sampled-data H∞ opti-
mization for designing ∆Σ converters. By sampled-data H∞

optimization, we can optimize intersample response of the
signals in ∆Σ converters, while only sampled values are opti-
mized by conventional methods. We present design examples
to show that our design is superior to conventional ones.

2. ∆Σ MODULATORS

2.1. Conventional modulators

Fig. 1 shows the block diagram of a conventional ∆Σ mod-
ulator. In this figure, the difference between the input r and
the output y is fed back to Σ, which is conventionally an ac-
cumulator Σ(z) = 1/(z−1) and outputs a signal ψ. Then the
signal ψ is quantized by a quantizer Q, which is a piecewise
constant function R → Q where Q is a finite subset of R.

The quantizer Q is a nonlinear system. To make the anal-
ysis easy, we introduce a linear model for Q. Define the quan-
tization error n, that is, n := Q(ψ) − ψ. Assuming that the
error n is independent of the input ψ, we take the additive
noise model for the quantizer as shown in Fig. 2. By using
this model, we see that the input-output equation of the con-
ventional modulator is obtained by

y =
Σ

1 + Σ
r +

1
1 + Σ

n = z−1r + (1 − z−1)n.
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Fig. 2. Linear model for ∆Σ modulator

Since 1/(1 + Σ) = 1 − z−1 is high-pass, the quantization
noise is reduced at low frequencies and increased at high fre-
quencies. If the input signal r contains few high frequency
components, we can separate the noise n from the output sig-
nal y by an appropriate lowpass filter.

Therefore, the accumulator Σ plays a noise-shaping role
in ∆Σ modulators. In the next section, we generalize this
property.

2.2. Quantization noise shaping

We here consider the linear model in Fig. 2. Let S denote
the family of all stable, causal, real-rational transfer functions
and

S ′ := {G ∈ S : G is strictly causal}.
Then we characterize Σ for the linear system in Fig. 2.

Lemma 1. The linearized feedback system Fig. 2 is well-
posed and internally stable if and only if

Σ ∈
{

R

1 − R
: R ∈ S ′

}

Proof. See chapter 5 in [7].

This theorem gives all stabilizing feedback filters. By us-
ing the parameter R ∈ S ′, the input/output relation of the
system Fig. 2 is given by

y = Rr + (1 − R)n =: Rr + Hn, (1)

where H = 1 − R is the noise transfer function (NTF) to be
designed. Note that the conventional first order ∆Σ modula-
tor has R(z) = z−1 ∈ S ′.

In implementation, finite-impulse response (FIR) filters
are often preferred, and hence we assume R is an FIR filter
(so is the NTF H), that is,

R(z) =
N∑

k=1

akz−k, H(z) = 1 −
N∑

k=1

akz−k

Note that R(z) is always in S ′. If a desired NTF Hdes(z)
is given by an FIR filter, R(z) is obtained by R(z) = 1 −
Hdes(z). Since R(z) must be strictly causal, we have to re-
strict Hdes(∞) = 1.

On the other hand, if Hdes(z) is given by an IIR filter,
our problem is to approximate Hdes(z) by an FIR filter H(z).
Since desired NTFs are given by their frequency characteris-
tics, approximation of H(z) should be done in the frequency
domain. Therefore, we formulate our problem as an H∞ op-
timization:

Problem 1. Given a stable transfer function Hdes(z) (desired
NTF) and a stable weighting function W (z), find H ∈ S with
H(∞) = 1 which minimize ‖(H − Hdes)W‖∞.

Then the optimization is reducible to a linear matrix in-
equality (LMI) with respect to a matrix variable and the coef-
ficients a1, . . . , aN [8], and can be effectively solved by stan-
dard optimization software (e.g., MATLAB).

Moreover, the zeros of H(z) can be assigned by linear
equations (linear constraints) of a1, . . . , aN . Define nH(z) :=
zN − ∑N

k=1 akzN−k. Then, H(z) has M zeros at z = z0 if
and only if

dknH(z)
dzk

∣∣∣∣
z=z0

= 0, k = 0, 1, . . . , M − 1,

where d0nH(z)
dz0 := nH(z). The LMI with these linear con-

straints can be also effectively solved.

2.3. Stability Constraints

The linearized model Fig. 2 is useful for analyzing the noise
shaping properties of ∆Σ modulators. The stability of ∆Σ
modulators, however, should be analyzed by considering their
nonlinear behaviors.

To analyze the stability, the H∞ norm of H(z) (NTF)
is available. For the stability of binary ∆Σ modulators, the
following criterion (Lee criterion) is widely used [3, 2]:

‖H‖∞ < 1.5. (2)

Note that this is not a sufficient nor necessary condition for
the stability. For multi-bit modulators with M -step quantizer,
the following is a sufficient condition for the stability [9, 2]:

‖h‖1 ≤ M + 2 − ‖r‖∞, (3)

where ‖h‖1 is the �1 norm of the impulse response of H(z).
Let ν denote the order of H(z). Then, we have the following
relation [10]:

‖h‖1 ≤ (2ν + 1)‖H‖∞.

By combining this with (3), we have another stability condi-
tion.

‖H‖∞ ≤ 1
2ν + 1

(M + 2 − ‖r‖∞). (4)

From the conditions (2) and (4), attenuation of ‖H‖∞ helps
the stability. Therefore, we add the following stability con-
straints to the design of modulators:

‖H‖∞ < C,
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Fig. 3. Oversampling ∆Σ DA converter
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Fig. 4. Error system for designing DA converter

where C > 0 is a constant (e.g., by Lee criterion, C = 1.5).
This inequality is also reducible to LMI [8] and easily com-
bined with the LMI optimization mentioned above.

3. DESIGN OF ∆Σ DA CONVERTERS

By using the feedback filter R(z) characterized in Lemma
1, we here design DA converters with ∆Σ modulators. To
take account of intersample response, we introduce sampled-
data H∞ optimization. From the input/output relation (1), the
system from r to y is R(z). In this section, we assume that
R(z) is given.

3.1. Design problem of ∆Σ DA converters

Fig. 3 shows an oversampling ∆Σ DA (digital-to-analog) con-
verter. Assume that the input signal u has sampling time T
and word length b [bits]. The digital signal u is first upsam-
pled by an interpolator [11] K(z)(↑ L). By ↑ L, L − 1 ze-
ros are introduced between two consecutive input values [11].
The following digital filter K(z), called interpolation filter,
operates on the L − 1 zero-valued samples inserted by ↑L to
yield nonzero values between the original samples.

Then the interpolated signal r goes through a ∆Σ modu-
lator, and becomes a signal y whose word length is converted
to another one, by usual 1 [bit]. Then the discrete-time signal
y is converted to a continuous signal by the zero-order hold
HT/L with hold time T/L, smoothed by a continuous-time
filter P (s), and finally becomes an analog signal yc.

Our objective here is to design the interpolation filter K(z)
to interpolate samples taking account of the analog perfor-
mance. If we a priori have the knowledge about the charac-
teristic F (s) of the original analog signal (e.g., u is a sampled
data of an orchestral music), we can use it explicitly for de-
sign.

Therefore, we consider the error system Fig. 4 for design-
ing the filter K(z). Let E denote the input/output operator
from wc to ec. Then, our design problem is then as follows:
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Fig. 5. Interpolation filters for DA converter: sampled-data
H∞ design (solid) and equiripple design (dotted)

Problem 2. Given a stable, strictly proper F (s), stable, proper
P (s), upsampling factor L, delay d, sampling period T , find
K(z) which minimizes

‖E‖∞ := sup
wc∈L2

‖ec‖L2

‖wc‖L2
.

Problem 2 is reducible to a finite-dimensional discrete-
time optimization [5], and hence the optimal filter K(z) can
be obtained by a standard numerical computation software
(e.g., MATLAB).

4. DESIGN EXAMPLE

We here present a design example of ∆Σ DA converters. The
design parameters are as follows: the sampling period T = 1,
the upsampling ratio L = 8, the reconstruction delay d =
T/L = 1/8, and the analog filters are P (s) = 1/(Tcs + 1)2,
Tc := T/π and

F (s) =
1

(Ts + 1)(0.1Ts + 1)
, T = 22.05/π.

Note that the lowpass filter F (s) simulates the frequency en-
ergy distribution of a typical orchestral music, which are ob-
served by FFT analysis of analog records of some orchestral
music. We design the FIR filter R(z) (of order 7) in ∆Σ
modulator by LMI [8], and the interpolation filter K(z) by
the sampled-data H∞ optimization. For comparison, we take
R(z) = z−1 and the equiripple filter for K(z) of order 21 as
a conventional design.

The obtained interpolation filters are shown in Fig. 5. The
gain around ω = 1/Tc = π of our filter is relatively large be-
cause the filter is designed by considering the lowpass char-
acteristic of P (s).

Then, we simulate the oversampling ∆Σ DA converter
shown in Fig. 3 with a binary quantizer

Q(ψ) = sgn(ψ) =

{
1, ψ ≥ 0,

−1 ψ < 0.
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(a) Sampled-data H∞ design
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(b) Equiripple design

Fig. 6. Time response

Table 1. Comparison of error
Sampled-data design Conventional design

‖ec‖∞ 2.08 × 10−1 2.67 × 10−1

‖ec‖2 5.68 × 10−1 7.21 × 10−1

RMS(ec) 6.34 × 10−2 8.06 × 10−2

We take for the digital input u a sinusoidal wave u[k] =
sin(0.1πk), k = 0, 1, 2, . . . , 80. The time responses are
shown in Fig. 6. The conventional DA converter shows large
errors around t = 10, 20, . . .. To see the difference, we show
the absolute error in Fig. 7, and some norms of the error
in Table 1. In the table, RMS is the root-mean-square val-
ues defined as follows: For fixed Tf > 0, RMS(ec) :={

1
Tf

∫ Tf

0
|ec(t)|2dt

}1
2
. These comparisons show that our de-

sign is superior to the conventional one.

5. CONCLUSIONS

We have proposed a new design method for ∆Σ modulators
and oversampling ∆Σ DA converters via H∞ optimization.
We have presented design examples and shown the advan-
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Fig. 7. Error: sampled-data H∞ design (solid) and equiripple
design (dotted)

tages of the present method.
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