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ABSTRACT

The aim of “Blind Source Separation” is to recover mutually
independent unknown source signals from observations ob-
tained through an unknown linear mixture system. Simulta-
neous diagonalization of correlation matrices (second-order
statistics) of observations is one of the resolutions, when the
unknown source signals are non-stationary. Although it is
trivial that the true separation matrix simultaneously diago-
nalizes all the correlation matrices, it is not well investigated
whether a simultaneous diagonalizer of the correlation ma-
trices is always a separation matrix. In this paper, we give
explicit solutions of simultaneous diagonalizers of the corre-
lation matrices and we also clarify the condition that the so-
lutions always achieve the blind source separation.

1. INTRODUCTION

The aim of “Blind Source Separation” is to recover mutu-
ally independent unknown source signals only from obser-
vations obtained through an unknown linear mixture system.
As resolutions of the problem, many methods have been pro-
posed [1]. It was reported that simultaneous diagonalization
of correlation matrices (second-order statistics) of observa-
tions achieves the blind source separation, when the unknown
source signals are non-stationary (see [2] for instance). Al-
though it is trivial that the true (unknown) separation matrix
simultaneously diagonalizes all the correlation matrices, it is
not well investigated (except limited cases [3, 4]) whether a si-
multaneous diagonalizer of the correlation matrices is always
a separation matrix.

In this paper, we give explicit solutions of simultaneous
diagonalizers of the correlation matrices and we also clarify
a necessary and sufficient condition that the solutions always
achieve the blind source separation for general cases.
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Technology, Japan.

2. OVERVIEW OF
SECOND-ORDER-STATISTICS-BASED BLIND

SOURCE SEPARATION

In this section, we formulate the second-order-statistics-based
blind source separation. We adopt unitary spaces as signal
spaces so that we can deal with the problem written in the
short time Fourier domain.

Let n, m (≤ n), and t be the number of observations, the
number of sources, and the time index (or the frame index in
the short time Fourier domain), respectively. Let s(t) ∈ Cm

be the mutually independent zero-mean unknown source sig-
nal vector and let A ∈ Cn×m be an unknown mixture matrix
with rank(A) = m. We assume that the observation vector
x(t) ∈ Cn is given by the following model:

x(t) = As(t). (1)

The aim of the blind source separation in this formulation is
to obtain a matrix W ∈ Cm×n that recovers independency
between any two elements of y(t) given by

y(t) = Wx(t). (2)

Let Rk, (k ∈ {1, . . . , K}) be the correlation matrices of
x(t) defined by

Rk = ETk
[x(t)x∗(t)], (3)

where X∗ and ETk
denote the adjoint matrix (or vector) of

X and the expectation operator over intervals t ∈ Tk, respec-
tively. We assume that Ti �= Tj for any i, j ∈ {1, . . . , K}
with i �= j. On the basis of Eq.(1) and the independency of
the unknown source signals, Rk can be written by

Rk = AΛkA∗, (4)

where Λk is a diagonal matrix defined by

Λk = ETk
[s(t)s∗(t)]. (5)

The key idea of the second-order-statistics-based blind source
separation is that if a certain matrix W makes WRkW ∗ diag-
onal matrices for all k ∈ {1, . . . , K}, the matrix W is deeply
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related to A−1
L (a left inverse matrix of A), when the unknown

source signals are non-stationary. In many previous works, si-
multaneous diagonalization of Rk is formulated as the prob-
lem to find a minimizer of a criterion similar to

J(W ) =
∑

k

||WRkW ∗ − diag(WRkW ∗)||2, (6)

(see [2] for instance), where ||X||2 = tr[XX∗] and diag(X)
denotes the diagonal matrix whose diagonal elements and their
order are equal to those of X , and the minimization is gener-
ally achieved by the gradient descent method. Here, we intro-
duce the following useful notation.

Definition 1 [4] If there exists a non-singular matrix P ∈
Cn×n that has exactly one non-zero element in each row and
column, satisfying

A = PB, A, B ∈ Cn×m, (7)

the matrices A and B are said to be essentially equal and
denoted by A =̇ B.

It is guaranteed that J(W ) is minimized and the solution
W surely achieves the separation, when the solution obtained
by the gradient descent method is incidentally equal to

W =̇ A−1
L . (8)

However, it is not so trivial that all minimizers of J(W ) achieve
the separation, even if the unknown source signals are mutu-
ally independent and non-stationary. In [3, 4], conditions that
achieve the separation in the case of K = 2 are discussed.
However, consideration for general cases such as K ≥ 3 is
needed, since two n.n.d Hermitian matrices can be always si-
multaneously diagonalized [5], even if they do not have the
structure written by Eq.(4).

3. EXPLICIT SOLUTIONS OF SIMULTANEOUS
DIAGONALIZER

In this section, we give explicit solutions of simultaneous di-
agonalizers of Rk as a preparation for analyzing the relation
between simultaneous diagonalization of correlation matrices
and the blind source separation. The following theorem plays
an essential role.

Theorem 1 [5] Let Ak ∈ Cn×n (k ∈ {1, . . . , K}) be n.n.d.
matrices and let B =

∑
k Ak. There exists a non-singular

matrix M that makes M∗AkM diagonal matrices for all k ∈
{1, . . . , K}, if and only if

AiB
−Aj = AjB

−Ai (9)

holds for any i, j ∈ {1, . . . , K}, where B− denotes an arbi-
trary generalized inverse matrix of B[5].

Hereafter, we give explicit solutions of simultaneous di-
agonalizers of Rk based on Theorem 1. Note that derivation
of the explicit solutions is basically along with the proof of
Theorem 1 with some supplements that make the solutions as
general as possible.

We can make a non-singular matrix Â = [A Ã] ∈ Cn×n,
where Ã ∈ Rn×(n−m) is a matrix consisting of the orthogo-
nal basis of N (A∗) (the null space of A∗), since rank(A) =
m. Thus, we can rewrite Rk as

Rk = ÂΛ̂kÂ∗, (10)

with

Λ̂k =
[

Λk O
O O

]
∈ Cn×n.

Although Â−1 is unknown, it surely exists and simultane-
ously diagonalizes Rk for all k ∈ {1, . . . , K}. Thus, on the
basis of Theorem 1,

RiB
−Rj = RjB

−Ri (11)

holds for any i, j ∈ {1, . . . , K} with

B =
∑

k

Rk = ÂΣ̂Â∗, Σ̂ =

(∑
k

Λ̂k

)
. (12)

Note that rank(B) = m holds.

Theorem 2 RiB
−Rj is invariant for any B−.

Proof Let B−
1 and B−

2 be different generalized inverse ma-
trices of B, then

B−
2 = B−

1 + Y − B−
1 BY BB−

1 (13)

holds with a certain matrix Y ∈ Cn×n [5]. Thus,

RiB
−
1 Rj − RiB

−
2 Rj

= RiB
−
1 Rj − Ri(B−

1 + Y − B−
1 BY BB−

1 )Rj

= RiY Rj − RiB
−
1 BY BB−

1 Rj

= RiY Rj − RiY Rj = O

holds, since R(Rk) ⊂ R(B), (k ∈ {1, . . . , K}), where
R(X) denotes the range of the matrix X . �

On the basis of Theorem 2, we adopt the Moore-Penrose
generalized inverse matrix[5] of B written by B+ as B− in
the following contents. Let B+ = LL∗, (L ∈ Cn×m) be a
certain full-rank decomposition of B+. From Eq.(11),

(L∗RiL)(L∗RjL)
= L∗(RiB

+Rj)L = L∗(RjB
+Ri)L

= (L∗RjL)(L∗RiL)
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holds for any i, j ∈ {1, . . . , K}, which means that L∗RiL
and L∗RjL are commutable Hermitian matrices and they share
all eigenvectors. Thus, it is concluded that L∗RkL, (k ∈
{1, . . . , K}) also share all eigenvectors. Let T be the matrix
consisting of the eigenvectors of L∗RkL satisfying

L∗RkL = TDkT ∗, k ∈ {1, . . . , K}, (14)

where Dk denotes p.d. diagonal matrices consisting the eigen-
values of L∗RkL, then T ∗L∗RkLT , (k ∈ {1, . . . , K)} are
diagonal matrices, which means that

W = (LT )∗ (15)

simultaneously diagonalizes Rk. Note that procedures for
calculating T are revealed in [6].

Lemma 1 [7] Let Z = LL∗ = L1L
∗
1 be two arbitrary full-

rank decompositions of n.n.d. Hermitian matrix Z, then there
exists a unique unitary matrix C that makes L1C = L.

Theorem 3 A simultaneous diagonalizer Eq.(15) is invariant
for any full-rank decomposition of B+.

Proof Let B+ = LL∗ = L1L
∗
1 be different full-rank de-

compositions of B+ with L1 �= L. According to Lemma 1,
there exists a unique unitary matrix C that makes L1C = L.
Thus, on the basis of Eq.(14),

L∗
1RkL1 = CL∗RkLC∗ = CTDkT ∗C∗ (16)

holds, which means that column vectors of CT are eigenvec-
tors of L∗

1RkL1. Thus, a simultaneous diagonalizer based on
L1 is given by

W = (L1CT )∗ = (LC∗CT )∗ = (LT )∗, (17)

which concludes the proof. �

In terms of diagonalization, any W satisfying W =̇ (LT )∗

is also a simultaneous diagonalizer of Rk

4. SIMULTANEOUS DIAGONALIZATION AND
BLIND SOURCE SEPARATION

In this section, we discuss the relation between the blind source
separation and simultaneous diagonalizers of Rk obtained in
the previous section.

If a certain simultaneous diagonalizer W of Rk given by
Eq.(15) achieves the blind source separation, then

X = WA =̇ Im (18)

must hold. Thus, we investigate properties of the matrix X in
Eq.(18). Let us consider the Hermitian matrix written by

BS = (Â∗)−1Σ̂+Â−1. (19)

Lemma 2
BBS = BSB. (20)

Proof Note that

BBS = ÂΣ̂Σ̂+Â−1, BSB = (Â∗)−1Σ̂+Σ̂Â∗,

Σ̂Σ̂+ = Σ̂+Σ̂ =
[

Im O
O O

]
,

hold, where Im denotes the identity matrix of degree m. Also
note that

Â∗Â =
[

A∗A O
O In−m

]

holds. Therefore,

BBS − BSB

= ÂΣ̂Σ̂+Â−1 − (Â∗)−1Σ̂+Σ̂Â∗

= (Â∗)−1(Â∗ÂΣ̂Σ̂+ − Σ̂+Σ̂Â∗Â)Â−1

= (Â∗)−1

([
A∗A O
O In−m

] [
Im O
O O

]

−
[

Im O
O O

] [
A∗A O
O In−m

])
Â−1 = O

is concluded. �

Theorem 4 BS is the Moore-Penrose generalized inverse ma-
trix of B.

Proof

BBSB

= (ÂΣ̂Â∗)(Â∗−1Σ̂+Â−1)(ÂΣ̂Â∗) = ÂΣ̂Σ̂+Σ̂Â∗

= ÂΣ̂Â∗ = B,

BSBBS

= ((Â∗)−1Σ̂+Â−1)(ÂΣ̂Â∗)((Â∗)−1Σ̂+Â−1)
= (Â∗)−1Σ̂+Σ̂Σ̂+Â−1 = (Â∗)−1Σ̂+Â−1 = BS ,

hold, and on the basis of Lemma 2 and the fact that B and BS

are Hermitian matrices,

(BBS)∗ = B∗
SB∗ = BSB = BBS ,

(BSB)∗ = B∗B∗
S = BBS = BSB,

hold, which conclude the proof. �

According to Theorem 4, it is easy to show that

LS = (Â∗)−1

[
Im

O

]
Σ−1/2, (21)
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satisfies B+ = LSL∗
S , where Σ = (

∑
k Λk). Thus, adopting

LSL∗
S as a full-rank decomposition of B+ yields

L∗
SRkLS

= Σ−1/2
[

Im O
]
Â−1ÂΛ̂kÂ∗(Â∗)−1

×
[

Im

O

]
Σ1/2

= Σ−1/2ΛkΣ−1/2 = Σ−1Λk,

which means that L∗
SRkLS , (k ∈ {1, . . . , K}) are already

diagonalized. Let TS be the unitary matrix consisting of the
eigenvectors of L∗

SRkLS satisfying

Σ−1Λk = TSΣ−1ΛkT ∗
S , k ∈ {1, . . . , K}, (22)

then a simultaneous diagonalizer of Rk is written by W =
(LSTS)∗. We can not directly calculate LS and TS , since
Â is unknown. However, it is guaranteed that the solution
(LSTS)∗ is essentially identical to the solution Eq.(15) on the
basis of Theorem 3 and Theorem 4. Thus,

X = WA = (LT )∗A = (LSTS)∗A

= T ∗
SΣ−1/2

[
Im O

]
Â−1Â

[
Im

O

]
= T ∗

SΣ−1/2

holds with the columns of T being appropriately permuted in
Eq.(14). Accordingly, the unitary matrix TS plays an essential
role for whether the simultaneous diagonalizer W achieves
the separation or not. Accordingly, we obtain the following
main theorem.

Theorem 5 The second-order-statistics-based blind source
separation is always achieved, if and only if the unitary matrix
TS satisfies

TS =̇ Im. (23)

Proof If TS =̇ Im is satisfied,

X = WA = T ∗
SΣ−1/2 =̇ Σ−1/2 =̇ Im

holds, which means that the separation is trivially achieved.
Contrarily, if TS is a unitary matrix that does not sat-

isfy Eq.(23), then one or more rows of X must have two or
more non-zero elements. Thus, the corresponding elements
of y(t) = Wx(t) = Xs(t) must include mixed source sig-
nals, which means that the separation fails. �

Here, we consider the case that Eq.(23) is not satisfied
in Theorem 5, that is, the case that simultaneous diagonal-
izers may fail the separation. When Eq.(23) is not satisfied,
Σ−1Λk, (k ∈ {1, . . . , K}) necessarily share at least one eigen-
space, whose dimension is larger than 1, derived from eigen-
values of multiple root in the same position. Let λ

(k)
i and

σi, (i ∈ {1, . . . , m}) be i-th diagonal elements of Λk, (k ∈
{1, . . . , K}) and Σ, respectively; and let

vi = [λ(1)
i λ

(2)
i · · · λ

(K)
i ], ui = vi/σi.

If all Σ−1Λk have eigenvalues of multiple root in the same po-
sition such as i1, i2, · · · , and i�-th elements with � ≤ m, i1 <
i2 < · · · < i� ∈ {1, . . . , m}, then

ui1 = ui2 = · · · = ui�
(24)

holds, which means that the transitions of λ
(k)
i and λ

(k)
j for

any i, j ∈ {i1, i2, . . . , i�} with respect to k are proportional,
since ui is normalized version of vi by its L1-norm. Thus,
it is concluded that a simultaneous diagonalizer may fail the
separation when Eq.(24) holds, even if the source signals are
mutually independent and non-stationary. This result is a gen-
eralized version of the results obtained in [3, 4].

5. CONCLUSION

In this paper, we gave explicit solutions of simultaneous di-
agonalizers of the correlation matrices for the second-order-
statistics-based blind source separation and also clarified a
necessary and sufficient condition that the solutions always
achieve the blind source separation.
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