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ABSTRACT

In this paper, we introduce a non-iterative nonlinear kernel
Wiener filtering method using kernel Canonical Correlation
Analysis (CCA) framework. This approach is based upon
the theory of reproducing kernel Hilbert spaces. A method
is proposed to find approximate Wiener filtered signal in the
original signal space by solving an optimization problem in
the higher dimensional space. Unlike the conventional iter-
ative approaches which rely on nonlinear optimization prob-
lem, our proposed method directly finds the pre-image using
distance constraints in the higher mapped domain. The signal
estimation and reconstruction capability of the new method
is demonstrated and benchmarked on the United States Postal
Service (USPS) digits database. Moreover, a comparison with
the conventional kernel Wiener filter is presented.
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1. INTRODUCTION

In the kernel Wiener filter, the filtering is applied in the higher
dimensional mapped space where the original signals are typ-
ically unknown. To solve this problem, one may look for the
signal in the original signal space, referred to as “pre-image”
[1, 2], by minimizing the estimation error in the higher di-
mensional space. In [1], the problem of kernel Wiener filter
using kernel Canonical Correlation Analysis (CCA) frame-
work was addressed. The reduced-rank Wiener filter problem
in the higher dimensional mapped domain was solved by us-
ing the kernel trick. A method was proposed to find approx-
imate Wiener filtered signal in the original space by solving
an optimization problem in the higher dimensional space. The
mean squared error (MSE) between the mapped data and the
reconstructed data using kernel Half CCA (HCCA), which is
important for reduced-rank estimation, was minimized with
respect to a pre-image. However, the results in [1] on im-
age restoration and reconstruction showed that this solution
for pre-image typically leads to poor reconstruction and sig-
nal restoration though the noise outside the signal/image is
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significantly reduced. Moreover, the approach have the con-
vergence problem, since the final solution is depended on the
iterative approach.

In an attempt to alleviate this problem, we follow the ap-
proach proposed in [3]. In this reference, the authors find the
pre-images of kernel Principal Component Analysis (PCA)
using a simple linear algebra-based approach that does not
suffer from convergence and local minima problems. The
Half-CCA (HCCA) method in [1] is adopted here in order to
obtain reduced rank kernel Wiener filtered pre-images, which
correspond to the mapped Wiener filtered signals in the two-
channel CCA framework. The pre-images are obtained non-
iteratively using a simple singular value decomposition (SVD)-
based approach.

In the following sections, we will first derive the kernel
version of the HCCA for reduced rank kernel Wiener filtering.
The problem of finding the kernel Wiener filter pre-image is
then cast into a high dimensional optimization problem, and
the solution of which is implicitly obtained in the lower di-
mensional signal space by utilizing linear algebra. The kernel
Wiener filter results are experimentally compared to the con-
ventional kernel Wiener filter on United States Postal Service
(USPS ') digits data set.

2. KERNEL HCCA AND RELATION TO KERNEL
WIENER FILTER

Let x € R™ and y € R? be two random vectors and ¢(-) :
R™ — R™ and ¢(-) : R? — R? be the correspond-
ing nonlinear mapping functions that map x and y into the
higher dimensional space with m < m' and p < p’ where
m’ < p’. Thus, the mapped vectors are given by ¢(x) € R™
and ¢ (y) € R, respectively. Now, let us assume that ¢)(x)
and 1 (y) are zero mean vectors with covariance matrices
Ryp € R™ ™ and Ry, € RP P and cross-covariance ma-
trix Rgy = R%Z(/) € R™' ¥ The mapping matrices of HCCA
are obtained by finding an SVD of the half coherence matrix

IThe United States Postal Service data set is downloadable at
“http://www.kernel-machines.org/”
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C= qu)wR;;f/Q S Rm/Xp/[l]i

C=FAGT or FTCG =A,
with FTF =1, GTG =1, ()
A=[ Aw 0]; Ap =diag[h, ..., ]

where F € R™>*™ and G € R *?" are the orthogonal
canonical mapping matrices that map ¢(x) and ¥ (y) to their
half canonical coordinates and A € R™ P is the canonical
correlation matrix with elements that measure the coherence
between the individual half canonical coordinates.

It has been shown [1] that the canonical coordinate map-
pings and the corresponding canonical correlation matrix can
be found by solving a coupled generalized eigenvalue prob-
lem,

RgyDy =
RygDy =

DyA )
RyyDyAT 3)

where Dy = F and Dy, = R;Z/ *G are the relevant
HCCA mapping matrices.

In practice, however, the covariance matrices are estimated
from samples of the data. Assume that the sample data ma-
trices X = [x1,...,X,) and Y = [y1,...,yn] are observed
where x;, y; ¢ € [1, n] are the ith realizations of the two
channel processes. Now, define the mapped sample matrices
® and U as

[B(x1),- -, p(xa)] € R @
[Qp(yl)?"'v’lp(Yn)] eRp'Xn (5)

Also, let ky(-,-) and ky(-,-) be the inner products Mercer
kernels [2] in the implicit spaces R™ and R?":

ks(x,y) = 6(x)" 6(y) ©)

ko (x,y) = p(x)9(y) ©)

The kernel Gram matrices associated with (6) and (7) are
given by

(I):
\I/:

Ky = ®1® = [ky(x;,x;)] € R™*" ®)
Ky = 010 = [ky(yi,y;)] € R™*" ©)

The kernel Gram matrices K and K, are non-negative def-
inite and have the same rank as the column rank of their cor-
responding mapped sample data matrices [4].

Using the sample covariance matrices instead of the the-
oretical ones and utilizing the non-singular kernel Gram ma-
trices (i.e. Gaussian kernel), the generalized eigenvalue prob-
lem in (2) and (3) can be cast into the kernelized eigenvalue
problem [1] as,

1 o .

~KyDy = DyAAT (10)
1 . .
~KyKyDy = K,DyATA (11)

where ]5¢ and ﬁw satisfy Dy = <I’]3¢ and D, = \wa.
Note that now the generalized (kernelized version) eigenvalue
problem of (10) and (11) for ]5¢ and ]ADw only depend on the
kernel Gram matrices K4 and K,. Consequently, ]5¢ and ﬁw
are implicitly obtained without computing the mapped data
matrices ® and W.

Remark:

Thus far, we have assumed that the data in the higher
mapped domain have zero mean. In practice, this assump-
tion may not be valid, and hence one needs to zero mean the
data. In this case, the following modifications are required.

Ky =JKyJ and K, = JK,J (12)
where J = (I — 1117) € R™*"™ is called centering matrix,
and1 = [1,---,1]7 € R" is the one vector.

Half canonical coordinates are optimal for computing the
reduced rank kernel Wiener filter of ¢p(x) from )(y), when
the objective of estimation is to minimize MSE of the two-
channels [5]. The rank-r (r < n) estimate of ¢(x) from ¥ (y)
is given as ¢,.(X) = H,4(y) [5]. The rank-r estimator H,
and its corresponding error covariance matrix of the filtering

error €, = @(x) — ¢ (X) = p(x) — H,p(y) are

H, = FAGIR;)/” (13)
= Dy,rADY, (14)

Ree(r) = Rgp — FAAFT (15)
A, = diag[h, ..., A (16)

where F,. € R™ %" and G, € RP' *" have the leading  eigen-
vectors of F and G, A, € R"*" contains the first r largest sin-
gular values of A, and Dy ,- and Dy, ,- have the first r columns
of Dy and Dy.

3. FINDING THE PRE-IMAGE BASED ON
DISTANCE CONSTRAINT

In [3], the authors proposed a multi-dimensional scaling (MDS)
idea that attempts to find the pre-images that exactly satisfy
the input-space distance constraints without any iterative com-
putation. This method is based upon simple linear algebra
and offers much better reconstruction and signal/image esti-
mation. Here, we utilize this method to find the reduced rank
kernel Wiener filter solutions.

The Euclidean distances between x and X and between
¢(x) and ¢(x) are given by d(x, %) and d(¢(x), p(X)), re-
spectively. Since the distances between the pre-image and
training samples i.e d(¢(x;), p(X)) Vi are typically related
to input space distances d(x;,X), it is possible to embed the
distance structure around a pre-image in the input space to
that in the feature space [3].

Let us consider the relationship between the higher mapped
distance and the distance in the input space. For a Gaussian
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. p— 2 . .
kernel case i.e. k(X., y) = gxp(%) where o is an arbi-
trary parameter, a distance in feature space is given by

d(p(x), (%)) = (d(x)— d(%))" (d(x) — $(%))

112
— X — X
_ 2—2exp(7‘|202 7 (17)

and hence, the distance in the input space is written in terms
of that in the higher dimensional space i.e.

d(x, %) = —202 log{%(Q Cd(¢(x),6(R)}  (18)

Now, the rank-r Wiener filter estimate of ¢,.(X) € R™ from
p(y) € RP, is given [1] by ¢(X) = H,.4h(y). Moreover, we
assume that the rank-r estimate is close to the real solution.
Thus, the distance in the higher dimensional mapped space is
rewritten as

d(¢p(x), p(%)) (p(x) — Hyp(y)) " (¢p(x) — Hoap(y))

= 1—-2a+T71 (19)

where a = ¢(x)" H,1p(y) and 7 = 9(y) HF H,1b(y). The
second term in (19) is written as

¢(x)" Dy A, DY (y) (20)
= ks(X, %) Dy, ADE kyp(Y,y) QD)

o =

For 7 in (19), using the orthogonal property Dg’qug,T =1,
HI'H, is represented by

HZHT = (D¢,rAer,r)T(D¢,rAer7r)
= DJ,ADy, (22)

and hence 7 is given by
7= ky(Y,y) Dy ATDY k(Y. y) (23)

The main idea in [3], [6] is to exploit only a limited number of
nearest data samples to estimate the pre-image. More specif-
ically, we define the vector d? = [d(¢(x;), p(X))]; where
x; is one of the n closest data points to the pre-image. Now,
using these n neighbors that are selected by (19) we form
X = {X1,...,Xs} and compute its SVD after the mean cen-
tering operation. That is, compute SVD of m x 7 matrix XJ

XJ=Uxv? = Uz (24)

where J is a centering matrix defined before, U is an orthogo-

nal matrix, and Z = XV7 contains columns that are the pro-

jections of x; onto the columns of U. Then, the approximate
pre-image can be obtained [3] as,

. 1

zZ=—=

2

where d2 = [d(¢(%1), (X)), ., d(¢(%n), $(X))]7 € R?

is the distance from the n nearest neighbor data samples and

»ivT(d? - dd) (25)

dZ = [||zl% ..., ||zal|>)* € R™ is the distance from the
origin in the input space. Transforming back to the original
coordinate system in the input space gives the pre-image x

x=Uz+ u, (26)

where g, is the mean of X.

4. RESULTS OF KERNEL WIENER FILTER FOR
IMAGE RESTORATION / RETRIEVAL

In this section, the simple USPS data set is used to validate
our proposed methods. The USPS data set is 256-dimensional
handwritten digits (0 to 9) in the range of [—1 ,1]. We used

a Gaussian kernel ky(x,y) = ky(x,y) = exp(—%)

The x-channel of kernel HCCA consists of clean USPS im-
ages, and the y-channel is the noise corrupted image (additive
noise) y = x + mn where 77 is a white Gaussian noise vec-
tor with statistics (0,07). Figures 1 and 2 show the original
100 clean digit images and the corresponding noisy images
corrupted by additive white Gaussian noise with SNR=1dB,
respectively.

Fig. 1. Original images

We randomly chose 1000 samples for the training and 100
samples for testing. The pre-image X is computed using (26)
without any iterative computation as opposed to the conven-
tional approach. Figures 3 and 4 show the reduced rank kernel
Wiener filtering results using the proposed method in this pa-
per and the standard kernel Wiener filter, respectively. The pa-
rameters are chosen as: o2 = 0.7, # = 20, and » = 300 and
the conventional kernel Wiener filter with parameters o2 =
0.053 and » = 300. Comparing these results, it is evident that
the proposed method performed much better than the conven-
tional one in terms of its restoration capability. Clearly, the
proposed method does not suffer from convergence to local
minima problems, which leads to erroneous restoration and
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Fig. 2. Noisy Images (SNR = 1dB).

reconstruction as shown in Figure 4 results. Moreover, the
average squared estimation error for the proposed and con-
ventional methods are 5.541 and 7.095, respectively. There-
fore, these results show the promise of the SVD-based kernel
Wiener filter for signal/image reconstruction and restoration.

Fig. 3. Linear algebra based kernel Wiener filter with 02 =
0.7, 7 = 20, and r = 300.

5. CONCLUSION

An SVD-based kernel Wiener filter using HCCA framework
is introduced for nonlinear signal estimation and reconstruc-
tion. Kernel HCCA was first extended and its relation to the
reduced rank kernel Wiener filtering was demonstrated. The
solution to the reduced-rank Kernel Wiener filter was then ob-
tained by solving the higher dimensional optimization prob-
lem in the original signal space to find Wiener filtered pre-
images. To avoid the iterative computation, kernel Wiener

3
E

Fig. 4. Conventional kernel Wiener filter with 02 = 0.053
and r = 300.

filter is obtained by embedding the distance information into
the higher dimensional space, and finding pre-images only
utilizing linear algebra. The signal estimation and reconstruc-
tion capability of the proposed method was demonstrated and
benchmarked against the conventional kernel Wiener filter on
the USPS data set.
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