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ABSTRACT

We consider the problem of pile-ups occurring in Gamma
spectrometry signals for HPGe detectors. The temporal sig-
nal is transformed in a sequence of busy and idle periods, each
busy period being characterized by its duration and its asso-
ciated energy. We present an estimator to correct the pile-up
phenomenon, based on an analytical formula. Applications
on simulations and real spectrometrical signals are presented,
which show good adequation between what we wish to re-
trieve and the estimation.

1. INTRODUCTION

A mixture of unknown radionucleides in unknown propor-
tion can be analysed by means of γ spectrometry. In the
case of HPGe detectors, photonic energy is converted into a
pulse of current, whose energy is recorded and put in an his-
togram which characterizes radioactive elements. The phe-
nomenon of pile-ups of electrical pulses is essentially a conse-
quence of the random incoming of the photons. For a source
with high-activity, the inter-arrival time of consecutive pho-
tons might be shorter than the typical pulse duration, thus
creating clusters of pulses. Figure 1 illustrates the pile-up
phenomenon : assume that Tn is the arrival time of the n-th
photon, Xn the length of its associated electrical pulse and
Yn its energy. When the n-th photon arrives, its energy is
recorded, and thus we observe (Xn, Yn). On the other hand,
the (n + 2)-th photon is detected during the (n + 1)-th busy
period ; we observe in that case neither Yn+1 nor Yn+2, but
Y ′

n+1 = Yn+1 +Yn+2. The duration of the cluster of pulses is
X ′

n+1 = (Tn+2+Xn+2−Tn+1, ). Since the energy spectrum
is obtained by making an histogram, multiple fake spikes can
appear that can cripple the identification of the radionuclei-
des.

Recently, a relation that can be used for analytical pile-up
correction was proposed in [1], using an similarity shared by
this problem with the inference of the service time in M/G/∞
queue from the duration of the busy periods. However, the un-
derlying algorithm proposed in [1] was sensitive to numerical
differentiation, and therefore does not achieve optimal rates
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Fig. 1. Illustration of Type II Counter Problem. (a) : input
signal with arrival times Tk, lengths Xk and energies Yk, k =
n, . . . , n + 2 ; (b) : associated on-off observed process Sx.

of convergence. We propose in this paper an alternate esti-
mator to bypass the step of numerical differentiation, which
show good performances in both simulations and real data.
We introduce in Section 2 the estimator used for pile-up cor-
rection, and the underlying algorithm. Some applications and
examples are also shown on both generated densities and real
data in Section 3.

2. METHODOLOGY

In this section we recall the main theorem introduced for the
pile-up correction of nuclear spectrospcopy, as well as the es-
timator obtained from this theorem. Proof of Theorem 2.1 can
be found in [2], and will be omitted here for convenience.

2.1. Notations and main theorem

Let N be an homogeneous Poisson process, with intensity λ
and associated points {Tn}n≥1. At each point Tn is asso-
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ciated a mark (Xn, Yn) where Xn represents the pulse du-
ration and Yn the energy of the n-th photon. Suppose that
{(Xn, Yn)}n≥1 is i.i.d., with common distribution f and that
{{(Xn, Yn)}n≥1, {Tm}m≥1} are mutually independent. It is
assumed that for all x ≥ 0 and y ≥ 0, f(x, y) ≥ 0. As men-
tioned in Section 1, the marks of N are not directly observ-
able. By analogy with queueing theory, a maximal restric-
tion of the signal to a segment where it is positive (respec-
tively 0) is referred to as a busy (respectively idle) period. It
is assumed that the only available data are the durations of
the busy and idle periods and the total energy collected on a
busy period. We denote by {T ′

n}n≥1 the starting point of each
busy period, by X ′

n the duration of the n-th busy period and
by Y ′

n its energy. We denote by P the probability measure
associated to the observed samples {(X ′

k, Y ′
k)}1≤k≤n. We

also naturally define the length of the n-th idle period Zn as

Zn
def= T ′

n+1−(T ′
n+X ′

n) . By the lack of memory property of
the exponential law, the idle periods have the same distribu-
tion (exponential with parameter λ) as the inter-arrival time
law. Denote, at last, by m the marginal probability density
function following the second dimension associated to f , that
is for all nonnegative y :

m(y) def=
∫ +∞

x=0

f(x, y) dx .

Our objective is therefore to estimate m, given a sample of
density P . The following result is stated in [1], and its demon-
stration is discussed in [2] :

Theorem 2.1 We have for all complex couple (s, p) in the set
{(z1, z2) ∈ C

2 ; Re(z1) > 0, Re(z2) ≥ 0} :∫ +∞

0

e−(s+λ)τ [a(τ, ε) − 1] dτ

=
λLP (s, p)

s + λ

1
s + λ − λLP (s, p)

, (1)

where

a(x, p) def=

exp
(

λ

∫ ∞

0

e−pε

{∫ x

0

(x − τ)f(τ, ε) dτ

}
dε

)
. (2)

and

LP (s, p) =
∫∫

R+×R+

e−sτe−pεP (dτ, dε) .

Equation 2 is of importance, because a can be expressed both
in terms of the density of (X, Y ) by definition, but also using
Theorem 2.1 in terms of the observed samples of (X ′, Y ′).
Therefore we get a relation between a functional of P , which
can be easily estimated from the data, and a functional of the
density of interest f .

2.2. Computation of the estimator

As mentioned in the introduction, we focus in this contribu-
tion on the probability density function of m rather than on
the joint density f . Our estimator is based on Fourier decon-
volution and kernel estimation methods. Let c > 0 and T > 0
be arbitrary constants. Let y → K(y) be a kernel function

and denote by K∗ : ν �→ K∗(ν) def=
∫ ∞
−∞ K(y)e−iνydy its

Fourier transform. Let h be a bandwidth parameter. We have
by differentiating (2) with respect to x :∫ +∞

0

e−pε

(∫ x

0

f(τ, ε) dτ

)
dε =

1
λ

∂ ln a

∂x
(x, p) . (3)

Therefore, a standard nonparametric estimator can be obtained
taking the limits x → ∞ and h → 0 and taking p = iν in (3)
using an explicit Fourier inversion :

m(y) = lim
h,x

1
2π

∫ +∞

−∞

1
λ

∂ ln a

∂x
(x, iν)K∗(hν)eiνy dν . (4)

On the other hand, a can be expressed with respect to P using
Theorem 2.1. For convenience, we denote by Ψ the complex-
valued function defined for all (ω, p) in R×{z ∈ C ; Re(z) ≥
0} as

Ψ(ω, p) def=
λLP (c + iω, p)

(c + iω + λ)(c + iω + λ − λLP (c + iω, p))
.

Using this definition and Theorem 2.1, we get for all (T, p) in
R

∗
+ × {z ∈ C ; Re(z) ≥ 0} :

a(T, p) = 1 +
e(c+λ)T

2π

∫ +∞

−∞
Ψ(ω, p)eiωT dω . (5)

We now use (4) and (5) to construct an estimator of m. A
natural estimate of λ is given by

λ̂n =

(
1
n

n∑
k=1

Zk

)−1

, (6)

and the Laplace transform LP can be estimated given a sam-
ple {(X ′

k, Y ′
k)}1≤i≤n as follows :

L̂Pn(c + iω, iν) =
1
n

n∑
k=1

e−(c+iω)X′
k−iνY ′

k . (7)

We now need to estimate the partial derivative ∂ ln a
∂x . Adapt-

ing the approach of [3] in a related problem, we get from the
power series expansion of Ψ

Ψ(ω, iν) = A1(ω, iν) + A2(ω, iν) , (8)

where we define

A1(ω, iν) def=
λLP (c + iω, iν)
(c + iω + λ)2

A2(ω, iν) def=
λLP (c + iω, iν)

c + iω + λ
Ψ(ω, iν)
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Therefore, using (5) and (8), we obtain :

a(x, iν) = 1 + a1(x, iν) + a2(x, iν) (9)

where we get from explicit Fourier inversion

a1(x, iν) =
∫ x

0

λ(x − τ)eλτ

∫ +∞

0

e−iνεP (dτ, dε)

and

a2(x, iν) =
1
2π

∫ +∞

−∞
A2(ω, iν)e(c+λ+iω)x dω .

Moreover we have :

∂a2

∂x
(x, iν) =

e(c+λ)x

2π
×∫ +∞

−∞
λLP (c + iω, iν)Ψ(ω, p)eiωx dω . (10)

and

∂a1

∂x
(T, iν) =

∫∫
R

2
+

�{τ≤T}eλτ−iνεP (dτ, dε) . (11)

and we have using (4) and (9) :

∂ ln a

∂x
(x, iν) =

1
a(x, iν)

[
∂a1

∂x
(x, iν) +

∂a2

∂x
(x, iν)

]
(12)

Estimators ân(T, iν) (respectively Î2,n(T, iν)) of a (respec-
tively ∂a2

∂x (T, iν)) can be obtained by plug-in directly estima-
tors (6) and (7) in (5) (respectively (10)). Moreover, the esti-
mator Î1,n(T, iν) of ∂a1

∂x (T, iν) can be obtained using (11) as
follows :

Î1,n(T, iν) def=
1
n

n∑
k=1

�{X′
k≤T}e

bλnX′
k−iνY ′

k

From (4) and and (12), we finally deduce the following esti-
mator for the marginal energy density function,

m̂(y; c, T, h, n) =
1
2π

×∫ +∞

−∞

Î1,n(T, iν) + Î2,n(T, iν)
ân(T, iν)

K∗(hν)eiνy dν (13)

Remark that, contrary to the algorithms proposed in [1] there
is no differentiation involved in the final estimator.

3. APPLICATIONS AND DISCUSSION

We present in this section results on simulated and real data.
For the real data, we dispose of N = 106 busy and idle se-
quences measured using the ADONIS system, which is based
on the principles described in [4], from a Cesium source, and
we wish to retrieve its associated energy spectrum. Given
these observations, we apply the algorithm described in Sec-
tion 2.

Fig. 2. Results on simulations : ideal (black), observed (blue)
and corrected energy spectrum (red).

3.1. Results on simulation

Figure 2 represents our results on a simulated density close to
real observations with λ = 0.04, X being drawn according
to a truncated Gamma distribution independently from Y . As
it can be seen, the multiple spikes and the piled-up Compton
continuum are both corrected.

3.2. Results on real data

We observe a mixture of Cesium 137 (which has one monoen-
ergetic spike at 662 keV), Cesium 134 (which have some rep-
resentative energy spikes at 569, 604, 795, 802 and 847 keV)
and other isotopes at unknown quantities at λ = 0.02. Choos-
ing T = 1 µs, we keep about 90% of our observations. Fig-
ure 3 shows the spectrum obtained by our pile-up correction
method, compared to the observed one. In this experiment,
we can see that the Compton continuum has been corrected,
as much as the multiple spike. Moreover, we retrieve most of
the energy spikes of Cs 137 and Cs 134 in enlarged zones
in Figures 4-(a) and 4-(b), and we now distinguish spikes
of other isotopes of the Cesium. which were hidden by the
piled-up Compton continuum. More precisely, using the JEF
2.2 database for identifying radionucleides, we retrieve some
spikes of Cesium 136 (725 keV), Cesium 130 (671 and 894
keV) and Cesium 129 (864, 906 and 946 keV), thus our re-
sults are quite promising. Some spikes however does not cor-
respond to radioactive elements. The most important problem
comes from the additive noise, that is not taken into account
in our modeling. Indeed, if we assume that the additive noise
has a probability measure G, we dispose in fact of observa-
tions with associated probability measure P ∗G, thus we must
correct the pile-up correction by replacing LP by LP/LG.
This problem is nevertheless limited in the case of HPGe de-
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Fig. 4. (a) Enlarged zone on the range [500 keV ; 800 MeV]. (b) Enlarged zone on the range [800 keV ; 1 MeV].
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Fig. 3. Piled-up (blue) and corrected (red) energy spectrum
of Cesium with real data.

tectors, where the SNR ratio is very good, so that we have
LG ≈ 1, but it could explain why the quality of our estimator
could be improved.

4. CONCLUSION

In this paper we investigated the problem of correcting the
pileup phenomenon in γ spectrometry. Using methods close
to the ones applied in the density deconvolution framework,
we obtain very promising results on real data. The use of
HPGe detectors which limits the problem of the additive noise
is crucial in our approach. The application of a denoising
technique before applying our algorithm be developed in fu-

ture contributions.
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