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ABSTRACT

The design of peak-constrained weighted least-square error 

(PCWLSE) Laguerre filters is of interest in signal processing 

applications. The formulation of such Laguerre filters ends up as a 

semi-infinite problem with two uncountable variables. Here, an 

efficient method is proposed to deal with this. Therefore, one can 

design PCWLSE Laguerre filters to satisfy all the continuous 

constraints of the problem. Furthermore, the desired phase 

response is also guaranteed. The proposed method has been 

developed based on exploiting the dual parameterization scheme 

derived directly from the Karush-Kuhn-Tucker condition. This 

approach may also be used to design similar asymmetric FIR 

filters.

1. INTRODUCTION

        The design of ideal filters by FIR filter structures usually 

results in filters that need a large number of taps. However, 

Laguerre filters introduce a general form of filter structure that can 

be substituted for FIR filters with a significant reduction in the 

number of taps required to achieve the same performance. They 

are especially well suited in applications where narrow-band filters 

and consequently a large number of FIR filter taps are needed [1]. 

Moreover, reducing the number of taps is not only beneficial in 

VLSI implementations, it is also favorable in filter design 

procedures, because computational schemes for filter design 

become extremely memory intensive as the number of taps 

increases.   

       Digital Laguerre filters have been conventionally designed 

according to two different criteria: least square error (
2L norm) and 

Chebyshev error ( L norm). However, it turns out that filters that 

are designed according to a trade-off between 
2L and L norms

have more desirable properties than ones designed by either 

criterion alone. They are also more suitable for a vast number of 

signal processing applications [2]. These filters are called    peak-

constraints weighted least-square (PCWLSE) filters. PCWLSE 

filter design can be formulated as a semi-infinite quadratic 

programming optimization problem [3]-[5]. In [3], an extended 

active set method has been proposed to solve the problem of FIR 

window design. This method has been used in [6] to optimize 

antenna arrays, and used in [4] to solve the problem of PCWLSE 

design of digital Laguerre filters. Also the magnitude restriction of 

the complex Chebyshev error as the constraint in [3] and [4] 

produces an additional uncountable variable. Therefore, there are 

two uncountable variables which convert the problem to a semi-

infinite dimensional case. To solve this problem, one of the 

variables (frequency) is considered to be discretized and then the 

problem is solved using an extended active set method on a dense 

grid of frequencies. In [5], the problem of symmetric FIR filters is 

investigated. Thus, the only uncountable variable of the problem 

that changes the problem to a semi-infinite case is the frequency. 

Then the problem has been solved using an efficient algorithm. 

This algorithm guarantees achieving an optimum solution (global 

minimum) if the problem satisfies the continuous constraints at 

points between the dense grid of frequencies.

       Here, we present a new and efficient method to design the 

Laguerre filter counterpart of the above problem. We will show 

that for the first time, one can design a peak constrained-weighted 

least-square Laguerre filter such that its optimum solution satisfies 

the continuous constraints of both frequency and the other 

uncountable variable of the problem. However, there are some 

significant differences between this work and [5]. First, the 

problem has been formulated to deal with Laguerre filters rather 

than FIR filters. Second, the procedure used here to extend the dual 

problem of finite dimensional space to the semi-infinite 

dimensional case is completely different from the one used in [5]. 

Third, the general procedure proposed here also differs from the 

one proposed in [5], which makes the new proposed algorithm 

more efficient.

        It is notable that the new proposed approach is also able to 

handle the design of constrained asymmetric FIR filters. This is 

reasonable because the Laguerre filter structures, which are 

generally nonsymmetrical, can be converted to conventional 

asymmetric FIR filters by setting the Laguerre parameter equal to 

zero [4]. More on this will be presented as a separate work in the 

future.

2. PROBLEM STATEMENT 

       The frequency response of the Laguerre filter of order N with

real coefficients N  is characterized by [4]:     

)()( jTj eLeH                                                                          (1) 

where )( jeL is an 1N vector with elements: 
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wherein b denotes the Laguerre parameter and 1b guarantees

the stability of the filter. Let Hd(e
j ) denote the desired frequency 

response and P and S be the passband and stopband, 

respectively, which are both compact and uncountable subsets 

of ],0[ . The PCWLSE design problem can be stated as follows 

[4]: 
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In (4) pw and sw  are weighting coefficients for the passband and 

stopband, respectively, with 1/ pS ww [2]. 

Also )( denotes the maximum allowable error at each 

frequency point. Using the real rotation theorem [7], problem (3) is 

converted to the following semi-infinite quadratic programming 

problem:
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and NN is a Toeplitz, Hermitian, positive definite matrix, 

whose elements ),( nm are defined as:
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and N  is a vector with elements: 
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in which .Re and  denote the real part and complex conjugate, 

respectively. The integrals in (9) and (10) can be evaluated using 

numerical methods such as the Newton-Cotes formula or 

Simpson’s rule.  

3. PROBLEM SOLUTION 

3.1. Slater’s Constraint Qualification 

The optimum solution to problem (5) is found by the extended dual 

parameterization method if we assume the following condition is 

satisfied, which is called Slater’s constraint qualification. 

Assumption1: Let ]2,0[PS
and

),(),(),(),,( Tg . Let N be an 

arbitrary point. Each ),(,0),,(gg is

pseudoconvex at , each ),(,0),,(gg is

continuous at , and there exists a N such that  

),(,0),,(gg .

Due to the continuity and pseudoconvexity of the constraints used 

in the problem, the corresponding statements of Assumption 1 are 

held to be true. The last statement of the assumption is also true if 

the transition band and the maximum allowable error are not 

chosen too narrow or too small, respectively. Assumption 1 can be 

checked by solving the following semi-infinite linear optimization 

problem: 
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where denotes the set of positive real numbers. If 1min
 , 

Assumption 1 is satisfied. Otherwise the problem is not feasible 

and also the assumption is not true. The semi-infinite linear 

programming problem (11) can be solved by extension of the 

simplex algorithm [8]. 

3.2  Extended Dual Parameterization Method

Let be a regular Borel measure and )(M denote the 

space of all positive regular Borel measures on defined in 

Assumption 1. The necessary and sufficient Karush-Kuhn-Tucker 

(KKT) conditions for problem (5) are stated as follows ([3], [4], 

[6]): 
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Let  be feasible. Using Caratheodory’s theorem, the optimum 

and non-unique measure satisfying (12) can be represented by a 

measure with finite support (counting or atomic measure) which is 

not greater than N  points [3], [4], [6]. Hence the KKT conditions 

turn into: 
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Note that the values of r related to each r are determined by: 
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Now, the problem has been converted to finite dimensional space. 

The Lagrangian function related to this problem can be stated as 

follows [9, pp.167-168]: 
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The elements of matrix A are:
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Note that vectorU  plays the role of Lagrange multipliers defined 

in finite dimensional cases.  

     Due to the positive definiteness of 
r
, the objective function of 

problem (5) is convex. Therefore, under Assumption 1, no duality 

gap exists, and the optimal value of problem (5) is equal to the 

optimal value of the Lagrangian dual problem. This is known as 

strong duality theorem (see [9]). i.e. 
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where the second term in (20) can be represented as: 
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Here, 
opt

 is the optimal solution of problem (5) and 

),0[ . The Lagrangian function is also convex with 

respect to . Thus, the necessary and sufficient condition to obtain 

minimum of ),,,( UiiL  is: 
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or

)(1
r
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 where 1
r

denotes Moore-Penrose pseudo inverse of r  [10] 

and we suggest it since r  is usually ill conditioned. Substitution 

of (23) in (16) results in: 
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Thus, the optimum solution to the “max min” problem stated in 

(20) is achieved from: 
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The problem (25) can be stated as: 
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),,(
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This minimization can be easily solved by the Matlab optimization 

toolbox. If the initial values of ),,( Uii
are near to the global 

minimum of ),,( UiiL , then Matlab is able to find the global 

minimum, otherwise grids with more points are needed. Here, are 

the basic steps of the algorithm: 

Step 1: Check if Assumption 1 is satisfied. This is done by solving 

the system of equations in (11). If the assumption is true, go to 

Step 2. 

Step 2: Solve the problem stated in (5) by discretizing 
PS

 for 

and ]2,0[i
. Then, find Bii ),( . These are suboptimal 

solutions to problem (26) that can be considered as initial values of 

and . In order to find good initial values for 
i
related to the 

set of suboptimal values Bii ),(  , we need to solve the 

following problem: 

)(min
),[

U
0i

L                                                                            (27) 

This minimization is only performed on the variable 
i
and can be 

easily minimized (see Remark 1). After this initialization step, 

refinement is needed by solving the 3×k-dimensional problem (25) 

using the numerical gradient method in the Matlab optimization 

toolbox. Let 
opt),,( iii

 be the optimal value of this problem. 

Then the optimum filter coefficients can be found by using 

opt),,( iii
in (23). 

Step 3: If the designed filter satisfies the continuous constraints of 

the problem, it is the optimum filter. Otherwise, one should begin 

Step 2 by a grid with more points to find closer initial points to the 

global minimum of the problem (see Theorem 3.5 of [5]). 

Remark1: The minimization stated in (27), can be solved 

analytically as follows: 

Assume that the set of Bii ),(  are determined in Step 2. By 

substituting these ),( ii
 in (24), it can be shown that: 
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)(UL  is quadratic in U . Thus, the necessary and sufficient 

condition for minimization it is: 
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This leads us to: 
TTT
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where 
AAT

1
r

is Moore-Penrose pseudo inverse of AAT
1

r

 . 

Due to convexity of )(UL and the feasible region defined in (27) 

for
i
 , set zero those negative values of 

i
found in (30).

Remark 2: We do not include the Laguerre parameter as a 

variable in the optimization process as in [11]. Rather, this is 

determined by two successive exhaustive searches. The first is 

done in (11) to find the feasible Laguerre parameters and the 

second is performed to find the best Laguerre parameter related to 

the least square error. The second exhaustive search is not usually 

necessary because the best Laguerre parameter found in the second 

search is usually very close to the Laguerre parameter that 

corresponds to the minimum among the set of 
min

 obtained 

from the first search. 

4. Numerical Example

We apply the above technique to the following example.

Example: Design a Laguerre filter with the following 

specifications:  
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( )  0.01 in both passband and stopband. Using Remark 2 the 

optimum Laguerre parameter with the above specifications is 0.76. 

Initial points were found by discretizing both
PS

 and

]2,0[ into 300 points.
In this example, the Laguerre filter of order 11 that satisfies all the 

continuous constraints has almost the same performance as an FIR 

filter with 40 stages. The simulation results are shown in Figs. 1-3. 

Figures 1 (a) and (b) show the magnified passband magnitude 

responses before and after refinement, respectively. The 

corresponding magnitude responses in the stopband are illustrated 

in Figs 2 (a) and (b).

                         (a)                                                   (b) 

Figure 1. Passband magnitude response of (a) initial filter design 

and (b) after refinement. 

                             (a)                                                  (b) 

Figure 2. (a) Filter designed by initial points does not satisfy the 

stopband constraints at some points (total weighted least  square 

error = 0.9738) (b) Filter designed after refinement process 

satisfies all  the constraints of stopband (total weighted least square 

error = 0.9714). 

Figures 3 (a) and 3 (b) are the passband phase responses before and 

after refinement. Both filters are almost the same. These figures 

show a nearly straight line with slope  -18. 

                              (a)                                             (b) 

Figure 3 Passband phase response with (a) initial points and (b) 

after refinement.   

5. Conclusions 

      In this paper we devised a method to design PCWLSE 

Laguerre filters based on using a finite dual parameterization 

technique. The Laguerre filters constitute a more general form of 

the digital filters whose one special case is the set of FIR filters. 

They can be substituted for long FIR filters with almost the same 

performance but with significantly fewer number of taps. In design 

of these filters we encountered the problem of semi-infinite 

quadratic programming with two uncountable variables. Our 

proposed method was able to cope with this problem such that the 

resultant solution satisfies all the continuous constraints of the 

magnitude response. The desired phase response was also 

guaranteed. This approach has also led us to the design of 

PCWLSE asymmetric FIR filters. 
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