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ABSTRACT

An adaptive distributed estimation strategy is developed based on
incremental gradient techniques. The proposed scheme addresses
the problem of distributed linear estimation in a cooperative fash-
ion, resulting in a distributed algorithm that can respond in real
time to changes in the environment. Each node is allowed to com-
municate only with its immediate neighbor in order to exploit the
spatial dimension while at the same time reducing the communica-
tions burden. A spatial-temporal energy conservation argument is
used to evaluate the steady-state mean-square-error performance
of the individual nodes across the adaptive distributed network.
Computer simulations illustrate the results.

1. INTRODUCTION

Distributed networks linking PCs, laptops, cell phones, sensors
and actuators will form the backbone of future data, communi-
cation, and control networks. Applications will range from sensor
networks to precision agriculture, environment monitoring, disas-
ter relief management, smart spaces, target localization, as well as
medical applications [1, 2, 3]. In all these cases, the distribution
of the nodes in the field yields spatial diversity, which should be
exploited alongside the temporal dimension in order to enhance
the robustness of the processing tasks and improve the probability
of signal and event detection. Collaborative signal processing has
been advocated as a way to achieve the efficient fusion of infor-
mation. Regardless of the cooperative technique adopted, it is an
accepted fact nowadays that distributed processing will need to be
both adaptive and cooperative. This is because not only the en-
vironmental conditions vary with time and space, but the network
topology may vary.

Motivated by incremental gradient ideas [4, 5], this paper de-
velops an adaptive distributed processing algorithm. It is a fully
distributed and cooperative scheme that can respond in real time
to changes in the environment. Moreover, the scheme balances
the tradeoff between cooperation and communications by sharing
the computational burden among the nodes while decreasing the
amount of communications that would be necessary in compari-
son to centralized solutions. We illustrate the adaptive procedure
by using an LMS-type update, which eliminates the need to embed
powerful processors at the nodes. More sophisticated adaptation
rules could be used as well. We also develop a spatial-temporal
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energy conservation argument to evaluate the steady-state mean-
square error performance of the individual nodes across the adap-
tive distributed network, and illustrate the results via computer
simulations.

It may be noted that most distributed techniques in the liter-
ature tend to be iterative in nature as opposed to adaptive. In an
adaptive distributed implementation, the individual nodes can pro-
cess the data in real-time and the entire network can be viewed as
an adaptive entity in its own right. The state of the entire network
would change with each measurement and these changes would
get propagated throughout the nodes with time.

2. THE ESTIMATION PROBLEM AND THE ADAPTIVE
SOLUTION

We are interested in estimating an unknown vector wo from mul-
tiple spatially independent but possibly time-correlated measure-
ments collected at N nodes in a network (see Fig. 1). Each node k
has access to realizations of zero-mean data {dk, uk}, k = 1, . . . , N ,
where dk is a scalar and uk is 1 × M . We collect the regression
and measurement data into global matrices:

U
∆
= col{u1, u2, . . . , uN} (N × M) (1)

d
∆
= col{d1, d2, . . . , dN} (N × 1) (2)

and pose the minimum mean-square error estimation problem:

min
w

J(w), where J(w) = E‖d − Uw‖2 (3)

{dk , uk}

{d2 , u2}

{d1 , u1}

{d3 , u3}
{dN , uN}

1

2

3

k

N

Fig. 1. A distributed network with N nodes and the incremental
algorithm path.

The optimal solution wo satisfies the normal equations [6]:

Rdu = Ruwo (4)
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where

Ru = E U∗U =

N∑
k=1

Ru,k , Rdu = E U∗d =

N∑
k=1

Rdu,k (5)

Computing wo from (4) would require every node to have access to
the global statistical information {Ru, Rdu}, thus draining com-
munications and computational resources. We seek a distributed
solution that allows cooperation among nodes through limited lo-
cal communications, while equipping the nodes with adaptive mech-
anisms to respond to time-variations in the underlying signal statis-
tics.

We start from the standard gradient-descent implementation

wi = wi−1 − µ [∇J(wi−1)]
∗ (6)

for solving the normal equations (4), where µ > 0 is a suitably
chosen step-size parameter, wi is an estimate for wo at iteration i,
and ∇J(·) denotes the gradient vector of J(w) evaluated at wi−1.
For µ sufficiently small we will have wi → wo as i → ∞. This
iterative solution could be applied at every node k or centrally at
some central node. A distributed version can be motivated as fol-
lows.

The cost function J(w) can be decomposed as:

J(w) =

N∑
k=1

Jk(w), where Jk(w)
∆
= E|dk − ukw|2 (7)

which allows us to rewrite (6) as

wi = wi−1 − µ

[
N∑

k=1

∇Jk(wi−1)

]∗

(8)

Now let ψ
(i)
k be a local estimate of wo at node k and time i and as-

sign the initial condition ψ
(i)
0 ← wi−1. Then wi can be evaluated

by iterating ψ
(i)
0 through the nodes in the following manner:

ψ
(i)
k = ψ

(i)
k−1 − µ [∇Jk(wi−1)]

∗ , k = 1, . . . , N (9)

At the end of the procedure (9), the last node will contain the global
estimate wi from (8), i.e., wi ← ψ

(i)
N . This scheme still requires

all nodes to share the global information wi−1. A fully distributed
solution can be achieved by resorting to incremental strategies,
which would require each node in (9) to evaluate its partial gra-
dient ∇Jk(·) at its local estimate ψ

(i)
k−1, instead of wi−1. This

approach leads to the incremental algorithm:

ψ
(i)
k = ψ

(i)
k−1 − µ [ ∇Jk(ψ

(i)
k−1) ]∗ , k = 1, . . . , N (10)

This cooperative scheme requires each node k to communicate
only with its immediate neighbor k − 1 over a pre-defined path.
Moreover, it is an established result in optimization theory that
the incremental solution (10) can outperform the centralized solu-
tion (9) as illustrated in Fig. 2. The figure compares the excess
mean square error (EMSE) of both algorithms for a network with
N = 20 nodes and using Gaussian regressors with Ru,k = I .
The background noise is white and Gaussian with σ2

v = 10−3.
The curves are obtained by averaging over 500 experiments with
µ = 0.05.

Now using instantaneous approximations R̂du,k = dk(i)u∗
k,i

and R̂u,k = u∗
k,iuk,i in (10), and allowing for different step-sizes
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Fig. 2. Excess mean square error (EMSE) performance for both
the distributed incremental solution (10) and the centralized solu-
tion (9) at node 1.

at different nodes, leads to a distributed incremental LMS algo-
rithm, summarized below:⎧⎪⎨⎪⎩

ψ
(i)
0 ← wi−1

ψ
(i)
k = ψ

(i)
k−1 + µku∗

k,i

(
dk(i) − uk,iψ

(i)
k−1

)
wi ← ψ

(i)
N

(11)

with k = 1, . . . , N . In this algorithm, a weight estimate is circu-
lated through a path defined over the network and updated by local
adaptive filters using local data solely – see Fig. 3.

{dk(i) , uk,i}
node: k

{dk-1(i) , uk-1,i}

{dN(i) , uN,i}

{d1(i) , u1,i}
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Fig. 3. The structure of the adaptive distributed algorithm.

3. ANALYSIS FRAMEWORK

Algorithm (11) exploits both the spatial and temporal dimensions
of the data. In order to study its performance, we shall extend the
energy conservation approach of [6] to treat the space-time case.
Due to space constraints, only the main steps are presented.

3.1. Data Model and Assumptions

The subsequent analysis relies on the following data assumptions
for the random variables {dk(i), uk,i}:

1. The unknown vector wo relates {dk(i), uk,i} as

dk(i) = uk,iw
o + vk(i) (12)
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where vk(i) is some white noise sequence with variance
σ2

v,k and independent of {dl(j), ul,j} for all l, j.

2. uk,i is independent of ul,i for k �= l (spatial independence).

3. For every k, the sequence {uk,i} is independent over time
(time independence).

3.2. Weighted Energy Conservation Relation

For the algorithm (11), we define the error signals:

ψ̃
(i)

k−1
∆
= wo − ψ

(i)
k−1, ψ̃

(i)

k
∆
= wo − ψ

(i)
k (13)

ea,k(i)
∆
= uk,iψ̃

(i)

k−1, ep,k(i)
∆
= uk,iψ̃

(i)

k (14)

ek(i)
∆
= dk(i) − uk,iψ

(i)
k−1 (15)

where (13) are the weight-error vectors, (14) defines the a priori
and a posteriori local errors, and (15) is the output error. Note that

ek(i) = ea,k(i) + vk(i) (16)

We are interested in evaluating in steady-state and for each node k,
the mean-square deviation (MSD), the excess mean-square error
(EMSE), and the mean-square error (MSE). These quantities are
defined as:

ηk
∆
= E‖ψ̃(∞)

k−1‖2 = E‖ψ̃(∞)

k−1‖2
I (MSD) (17)

ζk
∆
= E|ea,k(∞)|2 = E‖ψ̃(∞)

k−1‖2
Ru,k

(EMSE) (18)

ξk
∆
= E|ek(∞)|2 = ζk + σ2

v,k (MSE) (19)

In (17) and (18), a weighted norm notation is introduced. For
a vector x and a Hermitian positive-definite matrix Σ, ‖x‖2

Σ =
x∗Σ x. Introduce further the weighted a priori and a posteriori
local error signals for node k:

eΣ
a,k(i)

∆
= uk,iΣψ̃

(i)

k−1 and eΣ
p,k(i)

∆
= uk,iΣψ̃

(i)

k (20)

for some Hermitian positive-definite matrix Σ (at our choice). Dif-
ferent choices of Σ enable us to evaluate different performance
measures. Following [6, 7], a space-time energy relation that re-
lates the local errors quantities{

ψ̃
(i)

k−1, ψ̃
(i)

k , eΣ
a,k(i), eΣ

p,k(i)

}
(21)

can be found to be

‖ψ̃k‖2
Σ +

|eΣ
a,k|2

‖uk‖2
Σ

= ‖ψ̃k−1‖2
Σ +

|eΣ
p,k|2

‖uk‖2
Σ

(22)

Equation (22) is a space-time version of the weighted energy con-
servation relation used in [6] in the context of regular adaptive im-
plementations. The time index i has been dropped for compactness
of notation.

3.3. Variance Relation

Substituting (20) into (22), expanding and taking expectations –
under the independence assumptions on the regression data – gives:

E‖ψ̃k‖2
Σ = E‖ψ̃k−1‖2

Σ′ + µ2
kσ2

v,kE‖uk‖2
Σ (23)

Σ′ = Σ − µkE (u∗
kukΣ + Σ u∗

kuk) + µ2
kE‖uk‖2

Σ u∗
kuk (24)

Recursion (23) is a variance relation that can be used to infer the
steady-state performance at every node k. Note that Σ′ is solely
regressor-dependent and, therefore, decoupled from the weight-
error vector. For simplicity, in this work we assume that the regres-
sors {uk} arise from a source with circular Gaussian distribution
with covariance matrix Ru,k. Define the transformed quantities

ψk = U∗
k ψ̃k, ψk−1 = U∗

k ψ̃k−1, uk = ukUk, Σ = U∗
k ΣUk

through the eigen-decomposition Ru,k = UkΛkU∗
k , where Uk is

unitary and Λk is a diagonal matrix with the eigenvalues of Ru,k.
Invoking known results for Gaussian signals [6], we can show that
(23) and (24) become:

E‖ψk‖2
Σ = E‖ψk−1‖2

Σ
′ + µ2

kσ2
v,k Tr

(
ΛkΣ

)
(25)

Σ
′

=
(
I − 2µkΛk + γµ2

kΛ2
k

)
Σ + µ2

kΛkΣΛk (26)

where γ = 1 for complex signals and γ = 2 for real signals.

3.4. Diagonal Notation

Note from (26) that choosing Σ to be diagonal, Σ
′

will be diagonal
as well, suggesting a more compact notation. Collect the diagonal
matrices Σ and Σ

′
into column vectors1:

σ
∆
= diag{Σ} , σ′ ∆

= diag{Σ′} , λk
∆
= diag{Λk}

We can then rewrite (26) in terms of {σ, λk} as:

σ′ =
(
I − 2µkΛk + γµ2

kΛ2
k

)
σ + µ2

k(λT
k σ)λk

∆
= F kσ

where F k = I − 2µkΛk + γµ2
kΛ2

k +µ2
kλkλT

k . Moreover, expres-
sion (25) becomes

E‖ψk‖2
σ = E‖ψk−1‖2

F kσ + µ2
kσ2

v,k(λT
k σ) (27)

where the diag{} operator has been dropped from the weights for
compactness of notation.

3.5. Steady-State Behavior

Unlike the standard case [6], here the weight error vectors con-
verge to a spatial error profile, stabilizing at individual error energy
levels, i.e.:

E‖ψ̃(i)
k ‖2 → ck , as i → ∞

with a value ck that is possibly different for each node k. Let then

pk = ψ
(∞)
k and pk = ψ

(∞)

k be the weight-error vector in steady-
state and its transformed version, respectively. Also define the row
vector gk = µ2

kσ2
v,kλT

k . Then (27) gives as i → ∞

E‖pk‖2
σk

= E‖pk−1‖2
F kσk

+ gkσk , k = 1, . . . , N (28)

where we are choosing a different weighting σk for each node k.
Choosing σk−2 = F k−1σk−1 in (28) leads to:

E‖pk−2‖2
F k−1σk−1

= E‖pk−3‖2
F k−2F k−1σk−1

+ gk−2F k−1σk−1 (29)

1We use the notation Λ = diag{λ} to denote a diagonal matrix formed
from the entries of the vector λ, while λ = diag{Λ} denotes a vector
retrieved from the main diagonal of Λ.
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Now, substituting (29) into (28) gives:

E‖pk−1‖2
σk−1 = E‖pk−3‖2

F k−2F k−1σk−1

+ gk−2F k−1σk−1 + gk−1σk−1 (30)

The procedure can be repeated until all N equations in (28) are
used. It can then be verified that (30) can be written as

E‖pk−1‖2

(I−Πk,1)σk−1
= akσk−1 (31)

where

Πk,l
∆
= F k+l−1F k+l · · ·F NF 1 · · ·F k−1 , l = 1, . . . , N

ak
∆
= gkΠk,2 + gk+1Πk,3 + · · · + gk−2Πk,N + gk−1

With different choices of the weighting vector σk−1 in (31) we are
now able to calculate the MSD, EMSE and MSE for each node.
For the MSD, we select ση,k−1 = (I − Πk,1)

−1 q where q =
col{1, 1, · · · , 1}. Then

ηk = E‖pk−1‖2
q = ak (I − Πk,1)

−1 q (32)

Likewise, to determine the EMSE for node k we choose σζ,k−1 =
(I − Πk,1)

−1 λk, so that

ζk = E‖pk−1‖2
λk

= ak (I − Πk,1)
−1 λk (33)

The MSE follows from (19) and the result above.

4. SIMULATIONS

We consider a network with N = 16 nodes where each local
filter has M = 10 taps. The system evolves for 50000 itera-
tions and the results are averaged over 100 independent experi-
ments. The steady-state values are obtained by averaging the last
5000 time samples. Each node accesses time-correlated spatially
independent Gaussian regressors uk,i with correlation functions
rk(i) = σ2

u,k · (αk)|i|, i = 0, . . . , M − 1, with {αk} and {σ2
u,k}

randomly chosen in [0, 1) and depicted in Fig. 4. The background
noise vk(i) has variance σ2

v,k = 10−3 across the network. The
MSE curves show a good match between theory and practice.
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Fig. 4. Regressor (left) and noise (right) profile per node.

5. CONCLUSIONS

The inherent cooperative strategy of the proposed scheme not only
improves performance, but it also decreases the amount of commu-
nications needed to implement cooperation among the nodes. En-
ergy conservation arguments have been used to study the steady-
state performance of the individual nodes in the Gaussian case.
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More general data distribution, and also more sophisticated co-
operative schemes with each node cooperating with a subset of
nearby nodes, are useful extensions and will be studied in future
work.
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