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ABSTRACT

Fast QR decomposition RLS (FQRD-RLS) algorithms are well
known for their good numerical properties and low computational
complexity. However, the FQRD-RLS algorithms do not provide
access to the filter weights, and so far their use has been limited to
problems seeking an estimate of the output error signal. In this
paper we present a novel technique to obtain the filter weights
of the FQRD-RLS algorithm at any time instant. As a conse-
quence, we extend the range of applications to include problems
where explicit knowledge of the filter weights is required. The
proposed weight extraction technique is tested in a system identi-
fication setup. The results verify our claim that the extracted coef-
ficients of the FQRD-RLS algorithm are identical to those obtained
by any RLS algorithm such as the inverse QRD-RLS algorithm.

1. INTRODUCTION

The recursive least-squares (RLS) is one of the fastest converging
adaptive filtering algorithms. The convergence speed of the RLS
algorithm usually serves as a benchmark for adaptive filtering al-
gorithms. However, there are numerical stability issues associated
with it, mainly when implemented in a finite precision environ-
ment [1]. The conventional QRD-RLS algorithm exhibits RLS like
convergence and numerical robustness at the same computational
complexity of the RLS, i.e., O(N2), N being the number of filter
coefficients [2]. A number of low-complexity derivatives of the
QRD-RLS algorithm have been proposed [2–8]. In this paper we
focus on one efficient subset, commonly called FQRD-RLS algo-
rithms, with computational complexity of O(N).

The idea in FQRD-RLS algorithms is to exploit the underly-
ing time-shift structure of the input data vector in order to replace
matrix update equations with vector update equations [8]. The
vector update equations are derived from forward and backward
predictions. This paper considers algorithms based on the update
of backward prediction errors which are numerically robust [7].

The main limitation of the FQRD-RLS algorithms is the un-
availability of an explicit weight vector term. Furthermore, it does
not directly provide the variables allowing for a straightforward
computation of the weight vector, as is the case with the conven-
tional QRD-RLS algorithm, where a back-substitution procedure
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can be used to compute the coefficients. Therefore, the applica-
tions are limited to output error based (e.g., noise or echo cancel-
lation), or to those requiring a decision-feedback estimate of the
training signal (e.g., continuously updated equalizer). The absence
of weights in FQRD-RLS algorithms makes the problem of system
identification non-trivial.

This paper addresses the problem of extracting the weight vec-
tor from the internal variables of the FQRD-RLS algorithm. The
main results, summarized by two lemmas, provides us with an al-
gorithm that allows us at any time instant during adaptation to se-
quentially extract the columns of the Cholesky factor embedded
in the FQRD-RLS algorithm. From the Cholesky factor we can
obtain the true weights of the underlying LS problem by reusing
the known FQRD-RLS variables. We emphasize that the proposed
method relies on the knowledge of only vector updates present in
the FQRD RLS algorithms, as opposed to the matrix-embedded
structure of the conventional QR-RLS described in [9]. The prob-
lem of parameter identification has been addressed in [10] using
the duality between the FQR-RLS algorithm proposed in [6, 10]
and the normalized Lattice structure. The relation between the
results presented in this paper and those of [10], is under investi-
gation.

In the following we present the basic principles of the FQRD-
RLS algorithm. Thereafter, the new weight extraction (WE) al-
gorithm is presented. Simulation results verifying our claims are
followed by conclusions.

2. THE FQRD-RLS ALGORITHM

In this section we provide the basic concepts of QRD-RLS al-
gorithms and one version of the FQRD-RLS algorithms, herein
named the FQR PRI B algorithm [7, 8], to aid the explanation of
the novel weight extraction technique.

2.1. Basic concepts of QR decomposition algorithms

The RLS algorithm minimizes the following cost function

ξ(k) =
k∑

i=0

λk−i[d(i) − xT(i)w(k − 1)]2 = ‖e(k)‖2 (1)

where λ is the forgetting factor and e(k) ∈ R
(k+1)×1 is the a

posteriori error vector given as

e(k) = d(k) − X(k)w(k − 1) (2)
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where d(k) ∈ R
(k+1)×1 is the desired signal vector, X(k) ∈

R
(k+1)×N is the input data matrix, and w(k) ∈ R

N×1. The
QRD-RLS algorithm uses an orthogonal rotation matrix Q(k) to
triangularize matrix X(k) [2] as in[

0(k+1−N)×N

U(k)

]
= Q(k)X(k) (3)

where U(k) ∈ R
N×N is the Cholesky factor of the deterministic

autocorrelation matrix R(k) = XT (k)X(k).
Pre-multiplying (2) with Q(k) gives

Q(k)e(k) =

[
eq1(k)
eq2(k)

]
=

[
dq1(k)
dq2(k)

]
−

[
0(k+1−N)×N

U(k)

]
w(k)

(4)
The cost function in (1) is minimized by choosing w(k) such

that dq2(k) −U(k)w(k) is zero, i.e.,

w(k) = U−1(k)dq2(k) (5)

The QRD-RLS algorithm updates vector dq2(k) and matrix
U(k) as follows[

eq1(k)
dq2(k)

]
= Qθ(k)

[
d(k)

λ1/2dq2(k − 1)

]
(6)

[
01×N

U(k)

]
= Qθ(k)

[
xT(k)

λ1/2U(k − 1)

]
(7)

where Qθ(k) ∈ R
(N+1)×(N+1) is a sequence of Givens rotation

matrices which annihilates the input vector x(k) in (7) and can be
partitioned as [4]

Qθ(k) =

[
γ(k) gT(k)
f(k) E(k)

]
(8)

The QRD-RLS algorithm is complete with the definition of the
a priori error value e(k) = eq1(k)/γ(k) where γ(k) is a scalar
found in matrix Qθ(k), see (8).

2.2. The FQR PRI B algorithm

The idea of an FQRD-RLS algorithm is to replace the matrix up-
date equation (7) with a vector update equation. The a priori error
is given as

e(k) = d(k) − wT(k − 1)x(k)

= d(k) − dT
q2(k − 1)U−T(k − 1)x(k)︸ ︷︷ ︸

λ1/2a(k)

(9)

where g(k) = −γ(k)a(k), g(k) as found in (8).
In the FQR PRI B algorithm [7, 8], the update equation for

vector a(k) is used. The update equation, obtained by using for-
ward and backward prediction equations and applying rotation ma-
trices to triangularize the data matrix, is given by[

eb(k)

λ1/2‖eb(k−1)‖
a(k)

]
= Qθf (k − 1)

[
a(k − 1)

ef (k)

λ1/2‖ef (k−1)‖

]
(10)

The FQR PRI B algorithm is given at the beginning of Table 1.
See [6] and [7] for two different implementations (versions) of
the same algorithm. Note that this algorithm was used here but a
similar weight extraction procedure can be derived for the FQRD-
RLS algorithm based on a posteriori backward prediction errors,
FQR POS B of [5] and [6].

3. NOVEL WEIGHT EXTRACTION METHOD

The novel weight extraction (WE) technique presented below can
be invoked at any iteration of the conventional FQRD-RLS algo-
rithm. The internal variables of the FQRD-RLS algorithm at the
time of interest are computed in a serial manner, i.e., N iterations
for an N coefficient vector.

Consider the output of the adaptive filter y(k) given as

y(k) = wT(k − 1)x(k) = dT
q2(k − 1)U−T(k − 1)x(k) (11)

Let us define δi =
[
0 . . . 0 1 0 . . . 0

]T
to be a vec-

tor containing a ‘1’ at the ith position. We can now get the ith

coefficient of vector w(k − 1) as

wi(k − 1) = dT
q2(k − 1)U−T(k − 1)δi = dT

q2(k − 1)ui(k − 1)
(12)

where ui(k − 1) denotes the ith column of matrix U−T(k − 1).
This means that when dq2(k − 1) is given, the elements of the
weight vector w(k − 1) can be computed if all the columns of
matrix U−T(k − 1) are known. Using the following two lemmas
we show how all the column vectors ui(k − 1) can be obtained
in a serial manner given u0(k − 1). The main result is that the
column vector ui(k − 1) can be obtained from the column vector
ui−1(k − 1).

Lemma 1. Let uT
i (k) =

[
ui,0(k) . . . ui,N−1(k)

]T ∈ R
N×1

denote the ith column of the upper triangular matrix U−T(k) ∈
R

N×N . Given Qθ(k − 1) ∈ R
(N+1)×(N+1) from Table 1, then

ui(k−2) can be obtained from ui(k−1) using the relation below[
0

λ−1/2ui(k − 2)

]
= QT

θ(k−1)

[
zi

ui(k − 1)

]
, i = 0, . . . , N−1

(13)
where zi = −fT(k − 1)ui(k − 1)/γ(k − 1).

Lemma 2. Let ui(k) =
[
ui,0(k) . . . ui,N−1(k)

]T ∈ R
N×1

denote the ith column of the upper triangular matrix U−T(k −
1) ∈ R

N×N . Given Q̃θf (k) ∈ R
(N+1)×(N+1) from Table 1, then

ui(k − 1) can be obtained from ui−1(k − 2) using the following
relation[

−wb,i−1(k−1)

‖eb(k−1)‖
ui(k − 1)

]
= Q̃θf (k−1)

[
ui−1(k − 2)
−wf,i−1(k−1)

‖ef (k−1)‖

]
, i = 0, . . . , N−1

(14)
where

wf,i−1 =

{ −1 for i = 0
uT

i−1(k − 2)dfq2(k − 1) otherwise
(15)

and u−1(k − 2) = 0N×1.

The proofs of Lemmas 1 and 2 are in the Appendix. In order to
extract the implicit weights w(k−1) of the FQRD-RLS, Lemma 2
is initialized with u−1(k−2), and as a result we get column vector
u0(k − 1). Lemma 1 is then invoked to compute column vector
u0(k − 2). From u0(k − 2) we can compute u1(k − 1) using
Lemma 2. By induction we can conclude that all ui(k− 1) can be
obtained. The procedure is illustrated in Fig 1. As a consequence,
the elements of w(k − 1) can be obtained from (12) in a serial
manner. The WE algorithm is summarized in Table 1.
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(Lemma 1)
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U−T(k − 1)U−T(k − 2)

Step 2 applying: Q̃θf (k − 1)

Step 1 applying: Qθ(k − 1)

for w0(k − 1)
for w1(k − 1)

Fig. 1: The procedure for updating ui(k−1) for weight extraction.
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Fig. 2: Weight difference of the algorithms.

The number of operations required to completely extract all
the coefficients is given in Table 2. For comparison, the compu-
tational cost of the FQRD-RLS algorithm based on a priori back-
ward prediction errors and the Inverse QRD-RLS algorithm up-
dates are also given.

4. SIMULATIONS

In this section, the proposed WE algorithm is applied to the FQRD-
RLS algorithm in a system identification setup. The plant has
N = 11 coefficients and a colored noise input signal was used
with SNR set to 30 dB. The condition number of the input-signal
autocorrelation matrix is 821. The extracted weights of the FQRD-
RLS algorithm are compared to those of the IQRD-RLS algo-
rithm [2] which, with proper initialization, provides an identical
solution. As a measure of accuracy, the squared weight-difference
from both algorithms was calculated and averaged over K = 100
ensemble using

∆w̄i =
1

K

K−1∑
j=0

[wj
IQRD,i − wj

F QRD,i]
2 (16)

where for the jth simulation run, wj
IQRD,i and wj

F QRD,i are the

ith coefficients of the IQRD-RLS and the FQRD-RLS algorithms,
respectively. Figure 2 shows that the difference between the ex-
tracted weights of the FQRD-RLS and those of the IQRD-RLS
are with in machine precision. The learning-curves for both algo-
rithms are plotted in Figure 3. As can be seen from the figure, they
are identical up to numerical accuracy.
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Fig. 3: Learning-curve for FQRD-RLS and IQRD-RLS algorithm.

5. CONCLUSIONS

This paper showed how to reuse the internal variables of the fast
QRD-RLS (FQRD-RLS) algorithm to extract the weights in a se-
rial manner. The presented technique enables new applications
of the FQRD-RLS algorithm which are different to the standard
output-error type applications. The new weight extraction tech-
nique was used in a system identification setup to make the weight
vector explicitly available. The results were compared with those
using a design based on the inverse QRD-RLS algorithm. It was
verified that identical results are obtained using the proposed de-
sign method at a much lower computational cost.

6. APPENDIX

Proof of Lemma 1:
The update equation for U−T(k − 2) in the IQRD-RLS algorithm
is given by[

zT(k − 1)
U−T(k − 1)

]
= Qθ(k − 1)

[
0T

λ−1/2U−T(k − 2)

]
(17)

where z(k − 1) = γ−1(k − 1)fT(k − 1)U−T(k − 1). Pre-
multiplying both sides with QT

θ(k − 1) and considering each col-
umn we get[

0

λ−1/2ui(k − 2)

]
= QT

θ(k − 1)

[
zi(k − 1)
ui(k − 1)

]
(18)

where zi(k − 1) is the ith element of vector z(k)

zi(k − 1) = −fT(k − 1)ui(k − 1)/γ(k − 1) (19)

and the elements of vector f(k − 1) and γ(k − 1) are obtained
from the rotation matrix Qθ(k − 1) as[

γ(k − 1)
f(k − 1)

]
= Qθ(k − 1)

[
1

0N×1

]
(20)

Eq. (20) needs only to be evaluated once at the beginning of the
weight extraction procedure.
Proof of Lemma 2:
The FQRD-RLS algorithm of Table 1 updates a(k) at every itera-
tion as follows[

eb(k)

λ1/2‖eb(k−1)‖
a(k)

]
= Q̃θf (k − 1)

[
a(k − 1)

ef (k)

λ1/2‖ef (k−1)‖

]
(21)
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where eb(k) and ef (k) are the backward and the forward predic-
tion error values given by [2]:

ef (k) = x(k) − wT
f (k − 1)x(k − 1)

eb(k) = x(k − N − 1) −wT
b(k)x(k)

(22)

with wf (k) = U−T (k)dfq2(k) [2] and wb(k) denoting the for-
ward and backward prediction weight vectors, respectively. Using
Equation (22), the definition of a(k) = λ−1/2U−T(k − 1)x(k),
and removing scalars and vectors related to input signal x(k), the
following relation is obtained from Equation (21)[

−wT
b(k)

‖eb(k−1)‖
1

‖eb(k−1)‖
U−T(k − 1) 0

]

= Q̃θf (k − 1)

[
0 U−T(k − 2)
1

‖ef (k−1)‖
−wT

f (k−1)

‖ef (k−1)‖

] (23)

Considering the partition of matrix U−T(k − 1) into its column
vectors ui(k − 1), the column version of (23) becomes[

−wb,i(k−1)

‖eb(k−1)‖
ui(k − 1)

]
= Q̃θf (k−1)

[
ui−2(k − 2)
−wf,i−1(k−1)

‖ef (k−1)‖

]
, i = 0, . . . , N−1

(24)
where wb,i(k) and wf,i(k−1) are the ith elements of the forward
and backward prediction weight vectors, respectively. To account
for the first column of (23) we initialize with u−1(k−2) = 0N×1

and wf,−1(k − 1) = −1.
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Table 1: Weight extraction algorithm.

Conventional FQR PRI B algorithm
for each k
{ Obtaining dfq2(k):[

efq1(k)
dfq2(k)

]
= Qθ(k − 1)

[
x(k)

λ1/2dfq2(k − 1)

]
Obtaining a(k):[

eb(k)

λ1/2‖eb(k−1)‖
a(k)

]
= Qθf (k − 1)

[
a(k − 1)

ef (k)

λ1/2‖ef (k−1)‖

]
Obtaining ‖ef (k)‖:

‖ef (k)‖ =
√

e2
fq1(k) + λ‖ef (k − 1)‖2

Obtaining Qθf (k):[
0

‖e(0)
f (k)‖

]
= Qθf (k)

[
dfq2(k)
‖ef (k)‖

]
Obtaining Qθ(k):[
1/γ(k)

0

]
= Qθ(k)

[
1

−a(k)

]
Joint Process Estimation:[
eq1(k)
dq2(k)

]
= Qθ(k)

[
d(k)

λ1/2dq2(k − 1)

]
e(k) = eq1(k)/γ(k)

}
Weight extraction at any chosen time instant k
Initializing wf,−1(k − 1):
wf,−1(k − 1) = −1
Obtaining f(k − 1):[
γ(k − 1)
f(k − 1)

]
= Qθ(k − 1)

[
1

0N×1

]
for each i = 0 : N − 1
{ Obtaining ui(k − 1):[

−wb,i(k−1)

‖eb(k−1)‖
ui(k − 1)

]
= Q̃θf (k − 1)

[
ui−1(k − 2)
−wf,i−1(k−1)

‖ef (k−1)‖

]
Obtaining zi(k − 1):
zi(k − 1) = −fT(k − 1)ui(k − 1)/γ(k − 1)
Obtaining ui(k − 2):[

0

λ−1/2ui(k − 2)

]
= QT

θ(k − 1)

[
zi(k − 1)
ui(k − 1)

]
Obtaining the coefficients wf,i−1(k − 1):
wf,i(k − 1) = uT

i (k − 2)dfq2(k − 1)
Obtaining the coefficients:
wi(k − 1) = uT

i (k − 1)dq2(k − 1)
}

Table 2: Computational complexity of weight extraction (WE).

ALG. × OPER. MULT DIV SQRT
FQR PRI B 19N + 4 4N + 1 2N + 1

WE (per weight i) 16N − 6 − 14i 1 0
WE (total) 7N2 + N 1 0
IQRD-RLS 3N2 + 2N + 1 2N N

III ­ 575


