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ABSTRACT
This paper addresses the issues relating to the enforcement

of robust BIBO (�∞) stability when implementing the adap-

tive inverse control (AIC) scheme for noise cancelation. In

this scheme, an adaptive FIR-form filter is added to a closed-

loop system in order to reduce the output error caused by ex-

ternal disturbances. A Small-Gain-Theorem-based sufficient

stability condition, which accounts for the feedback interac-

tion between the time-varying adaptive filter and the unmod-

eled dynamics existing in the closed-loop plant, is derived.

This condition leads to the formulation of a constrained con-

vex optimization problem solvable recursively using a modi-

fied RLS algorithm that preserves the converge properties of

the original RLS algorithm.

1. INTRODUCTION

The AIC scheme for noise cancelation [1] has been demon-

strated to be very useful in a wide range of applications. In

particular, it has been seen that using AIC, it is possible to en-

hance the performance achieved by LTI controllers employed

in laser beam jitter suppression applications [2].

In general, the stability problem arises when we have a

system that consists of smaller subsystems interconnected in

feedback configurations. Even though each of these subsys-

tems is internally stable, the bigger system could be unstable.

In the particular case of AIC, ensuring that the adaptive filter

employed is stable does not guarantee stability of the scheme

as a whole. Arguments for stability of the AIC scheme have

been discussed in [1]. However, those are based on conditions

that are impossible to impose on a real case experiment. Such

arguments do not take into account the inherent uncertainty

in any identified model, due to the inability of an LTI model

to capture the real dynamics of a physical system, which in

general, is time-varying and nonlinear.

The analysis of robust stability and some methods for en-

forcing it have been addressed by this author in [3]. Here,

we develop further in order to preserve the convergence prop-

erties of the recursive algorithm employed in the implemen-

tation of the adaptive filter. In the convergence analysis we

follow the approach in [4].
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2. PROBLEM FORMULATION

2.1. Notation and Mathematical Preliminaries

The space of all bounded scalar-valued sequences is denoted

by �∞. Thus, if x = {. . . , x(−1), x(0), x(1), . . .}, with x(k)
∈ R, is a sequence in �∞, then

‖x‖�∞ = sup
k

|x(k)| < ∞. (1)

From a mathematical point of view, a system is an operator

that maps sequences between two signal spaces. In this case,

the operators of interest are the operators that map signals

from �∞ to �∞ (operators on �∞), that are linear and causal,

but not necessarily time-invariant. An operator F from �∞ to

�∞ is called bounded if its induced norm defined as

‖F‖�∞→�∞ = sup
x∈�∞,x �=0

‖Fx‖�∞

‖x‖�∞
(2)

is finite. Also, an operator F : �∞ → �∞ is said to be stable

with respect to a signal space �∞ if it is bounded on �∞ [5].

In particular, it is possible to show that the induced norm from

�∞ to �∞ of the linear time-varying (LTV) system F (k, z) =
w0(k)+w1(k)z−1 + . . .+wM−1(k)z−M+1, with wi(k) ∈ R

and k ∈ Z, is given by

‖F‖�∞→�∞ = sup
k

‖w(k)‖�1 [3]. (3)

Next, consider the block diagram in Fig. 1. It is clear that

the relations
y1 = P2y2 + u1

y2 = P1y1 + u2
(4)

hold. The feedback connection in Fig. 1 is called well posed

if (4) gives a unique output {y1, y2} in for any input {u1, u2}
in �∞ [5]. A special case of wellposedness is given when the

operator P1P2 is strictly causal.

Lemma 1: If the operator P1P2 is strictly causal, then the

feedback connection of Fig. 1 is well posed [3], [5]. �
The last mathematical tool that we need is a particular

version of the Small Gain Theorem.

Theorem 1: Let P1 : �∞ → �∞ and P2 : �∞ → �∞ be

two stable operators and assume that the closed-loop system,

in Fig. 1, is well posed. Then, the closed-loop system is �∞-

stable if ‖P1‖�∞→�∞‖P2‖�∞→�∞ < 1 [5]. �
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Fig. 1. Typical Feedback Connection.

2.2. The Adaptive Inverse Control Scheme

The AIC scheme is shown in Fig. 2. Here, G represents the

physical system to be controlled, Ĝ is an identified LTI model

of the plant G, and Q is an adaptive feedforward filter. For

analysis purposes, in this subsection, we consider that Ĝ = G
and r(i) = 0 for all i. Thus, it is clear that n̂ = n.

Now, let us define

nτ =
{

nτ (k) = n(k) 0 ≤ k ≤ τ
nτ (k) = 0 otherwise

, (5)

let mτ = Gnτ , yτ = v + nτ , and Qτ be an operator com-

puted according to some law using the information at time

τ . Now, recalling that SISO systems commute, it is immedi-

ate that GQτnτ = Qτmτ . Then, the control objective is to

find the operator Qτ , which is the solution to the optimization

problem

min
Q

‖yτ‖�2 = min
Q

‖nτ − Qmτ‖�2 . (6)

Thus, introducing the constraint Q(z) =
∑n−1

i=0 wiz
−iz−1,

the optimization problem (6) becomes

min
w

‖Aw − b‖2
�2 , (7)

where the matrices for τ + 1 samples are

b =

⎡
⎢⎢⎢⎣

d(0)
d(1)

...

d(τ)

⎤
⎥⎥⎥⎦ and A =

⎡
⎢⎢⎢⎣

U(0)
U(1)

...

U(τ)

⎤
⎥⎥⎥⎦ . (8)

Notice that d(k) = n̂(k) and U(k) = [mτ (k−1) mτ (k−
2) · · · mτ (k − M)]. It is well known that the solution to the

regularized version, minw

{‖Aw − b‖2
�2

+ λo‖w‖2
�2

}
, of the

problem (8) can be solved by the RLS recursions

w(k) = w(k − 1) +
P (k − 1)UT (k)

1 + U(k)P (k − 1)UT (k)
e(k) (9)

P (k) = P (k − 1) − P (k − 1)UT (k)U(k)P (k − 1)
1 + U(k)P (k − 1)UT (k)

, (10)

with e(k) = [d(k)−U(k)w(k−1)], w(−1) = 0 and P (−1) =
λo−1I [6]. Finally, to end this subsection, let define F (z) =∑M−1

i=0 wiz
−i, where M is referred as the order of the filter

F (z). Clearly, Q(z) = F (z)z−1.
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Fig. 2. Adaptive Inverse Control Scheme.

2.3. Convergence Properties of the AIC scheme using RLS

In order to analyze the convergence properties of the RLS

algorithm, it has been common to define the Lyapunov-like

function

V (k) = w̃T (k)P−1(k)w̃(k), (11)

where, w̃(k) = wo − ŵ(k), being wo the value that makes

d(k) = U(k)wo [4]. Now, we review some fundamental facts

about the RLS algorithm and V (k). First, defining g(k) =
V (k)−V (k−1) and after some not-too-easy algebraical ma-

nipulations, for this case, we obtain that

g(k) = − w̃T (k − 1)UT (k)U(k)w̃(k − 1)
1 + U(k)P (k − 1)UT (k)

. (12)

Thus, from (11) and (12), we conclude that V (k), is a posi-

tive, bounded, monotonically decreasing sequence and there-

fore V (k) converges. On the other hand, using the matrix

inversion lemma and the RLS recursions it is verifiable that

P−1(k) = P−1(−1) +
k∑

i=0

UT (i)U(i). (13)

Consequently, we can state the following.

Lemma 2: Let λM (k) be the smallest eigenvalue of the

positive definite matrix P−1(k). Thus, if limk→∞ λM (k) =
∞, then limk→∞ w(k) = wo.

proof: Since P−1(k) is positive definite, it can be decom-

posed as P−1(k) = T (k)Λ(k)TT (k), where Λ(k) is a diag-

onal matrix with positive entries, λ1(k), · · · , λM (k), in the

diagonal, decreasingly ordered. Defining ν(k) = TT (k)w̃(k),
it is immediate that

V (k) =
M−1∑
i=1

ν2
i (k)λi(k) + ν2

M (k)λM (k).

V (k) converges, then [ν2
M (k)λM (k)] converges as well.

Therefore, since limk→∞ λM (k) = ∞, it is immediate that

limk→∞ ν2
M (k) = 0. Thus, limk→∞ w̃(k) = 0 and conse-

quently limk→∞ w(k) = wo. �
By (13), it is clear that the sufficient condition of Lemma

2 is satisfied if limk→∞ λmin[
∑k

i=0 UT (i)U(i)] = ∞. In
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the case of the AIC scheme with F (z) having the FIR form,

this condition is satisfied if the signal mτ , used to form the

regressor U(i), is weakly persistently exciting [4] of order

M .

2.4. Model Uncertainty and Robust Stability

Consider Fig. 2, and let Φ be an operator, such that, y = Φr.

It is immediate that Φ = G if the condition Ĝ = G holds.

Consequently, it is possible to conclude that Φ is �∞-stable

for any F (z) if the system plant G is stable. Unfortunately,

this stability condition is not useful in a real case scenario,

since, it is theoretically impossible to have a model Ĝ(z) such

that Ĝ = G.

Let the signals r and n in Fig. 2 be in �∞ and let Ĝ, G and

F be operators on �∞. In general, G is a bounded, nonlinear,

time-varying and causal operator, and therefore it is natural to

consider that

G = Ĝ + ∆, (14)

where, in general ∆ is a bounded, nonlinear, time-varying and

causal operator, representing the differences between mod-

eling and reality. Also, let us define Fa(z) = −Q(z), and

notice that Fa is strictly causal and linear. Also, notice that

considering (14), the system in Fig. 2 and the system in Fig.

3 are equivalent. Hence, one can write

uG = Fan̂ + r
n̂ = ∆uG + n

. (15)

The development, done thus far, allows us to conclude

some facts about our adaptive system. To begin, recalling

Lemma 1, it is immediate that the system in Fig. 3 is well

posed. Consequently, the following result also holds.

Theorem 2: Let w(i) = [w0(k) . . . wM−1(k)]T be the

adaptively computed vector of gains for the prediction prob-

lem in Fig. 2 at time k. Furthermore, let ‖∆‖�∞→�∞ < 1
γ ,

with γ ∈ R
++. Then the system in Fig. 3 is �∞-stable if

‖w(k)‖�1 ≤ γ, ∀ k = 0, 1, 2, . . . [3]. � (16)

Since the systems in Fig. 2 and Fig. 3 are equivalent,

Theorem 2 gives us a sufficient condition for enforcing �∞-

stability on the AIC scheme in Fig. 2. Thus, (16) leads to

the formulation of a new problem, namely, the constrained

adaptive filtering problem, stated as

min
w

‖Aw − b‖2
�2 s.t. ‖w‖�1 ≤ γ. (17)

This optimization problem is convex, which means that

an optimal solution can be found, and that this solution is

unique if rank(A) = M . However, in this case we have

the additional difficulty of finding this optimal point in a re-

cursive manner. Thus, sometimes it could be useful to re-

place the constraint given by the �1-norm by the constraint

‖w‖�2 ≤ α, where, α = γ√
M

. This is possible, because for a

vector x ∈ R
n, the relationship ‖x‖�1 ≤ √

n‖x‖�2 holds.

aF
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Fig. 3. ∆ and Fa in Typical Feedback Connection.

3. ENFORCEMENT OF �∞-STABILITY

An exact optimal solution to (17) can be derived [3], which

is recursively implementable, however, this is only applica-

ble in a finite-time horizon and requires a priori knowledge

about the signal mτ that is not always available. A different

approach is to find a suboptimal solution by looking for the

closest, in some sense, feasible point to the recursively com-

puted vector of gains, wuo = w(k), using the RLS algorithm.

A natural closest point is the orthogonal projection of wuo

over the convex feasible region of (17) [3]. However, in order

to respect the convergence properties of the RLS algorithm

the following nonorthogonal projection is proposed.

min
ρc

‖ρc − ρuo‖2
�2 s.t. wc ⊂ Γj , j = 1 or 2. (18)

Where ρs and ws are related by ρ = P
−1

2 w, with P
−1

2 being

the Cholesky factor of P−1(k), i.e., P−1(k) = P
−T

2 P
−1

2 .

Also Γ1 = {wc : ‖wc‖�1 ≤ γ} and Γ2 = {wc : ‖wc‖�2 ≤ α}.

When j = 1, we refer to this as the �1-norm constrained prob-

lem, similarly if j = 2, we refer to this as the �2-norm con-

strained problem. The problem in (18) is convex, therefore,

if the true value wo is outside the feasible region, then the

projected point, wco = P
1
2 ρco with ρco the optimal solution

to (18), will stay in the border of the feasible region. On the

other hand, if wo is inside the feasible region then the follow-

ing relationship immediately holds.

‖ρo − ρco‖2
�2 ≤ ‖ρo − ρuo‖2

�2 . (19)

Thus, if after computing the projection, wco, we redefine w(k)
as w(k) = wco, then under the assumption that wo is feasi-

ble, the convergence properties of the original RLS algorithm

remain the same, since V (k) remains monotonically decreas-

ing.
Now, we derive projections for cases the j = 1 and j = 2.

If j = 2, the corresponding Lagrangian for (18) becomes

L(wc, µ) = (wc − wuo)T P−1(wc − wuo) + µ([wc]T wc − α2)

and the corresponding KKT conditions are

µ ≥ 0 (20)

∇wcL(wc, µ) = 2(P−1 + µI)wc − 2P−1wuo = 0 (21)

∂L(wc, µ)
∂µ

= [wc]T wc − α2 = 0. (22)
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The KKT conditions indicate that the optimal point is given

by

wco = (P−1 + µoI)−1P−1wuo. (23)

Then replacing in (22) the following identity holds

[wuo]T P−1(P−1 + µoI)−2P−1wuo = α2. (24)

Recalling that P−1 is symmetric and positive definite, then,

there is a matrix QP , such that, P−1 = QP ΛQT
P , where

QT
P QP = I , and Λ is diagonal and positive definite. Then

it is immediate that

(P−1 + µoI)−2 = QP

⎡
⎢⎣

1
(λ1+µo)2 0

. . .

0 1
(λM+µo)2

⎤
⎥⎦ QT

P .

Now, let yo = QT
P P−1wuo. Then, µo solves

yo
1
2

(λ1 + µo)2
+

yo
2
2

(λ2 + µo)2
+ . . .+

yo
M

2

(λM + µo)2
= α2, (25)

with λ1 ≥ λ2 . . . ≥ λM . Note that µo can be found, using a

bisection-type algorithm, as the only real solution to (25).

Similarly, the case j = 1 can be solved, using an interior-

point method, by replacing the �1-norm constraint by

Cwc � γ12M×1, (26)

where C is the matrix formed by the 2M different possible

sign-vectors of wc.

Based on the previous results, we formulate an algorithm

that enforces the stability condition (16) and preserves the

convergence properties of the original RLS algorithm.
Algorithm 1 (Modified RLS Algorithm):
1. Compute w(k) and P (k) using (9)-(10). Also, using (13),

compute P−1(k).

2. If ‖w(k)‖�2 (�1) < α (γ) set wco(k) = w(k), return to step

1 and compute w(k + 1) and P (k + 1). If ‖w(k)‖�2 (�1) ≥
α (γ) go to step 3.

3. Compute wco(k) according to (23)-(25) in the �2-norm case

and according to a corresponding method in the �1-norm case.

Set w(k) = wco(k) and go back to step 1.

Notice that F (z) must always be implemented using wco(k).

4. EXPERIMENTAL IMPLEMENTATION

In order to test the ideas developed in this paper, Algorithm

1 was implemented on the MEMS/laser beam jitter experi-

ment described in [2] using a TI TMS320C6701 Digital Sig-

nal Processor. The effectiveness of this approach is shown in

Fig. 4 and Table 1. The top plot shows the time series of the

measured output y for three different cases; Open-loop, the

system under the action of a µ-synthesis LTI controller, and

under the AIC scheme using a filter of order 15, with α = 4.0
and λo = 5 × 10−5 for the case j = 2. Similarly, the bottom

plot shows the evolution over time of the �2-norm of wco(k).
The disturbance employed is noise with bandwidth 0-100Hz.

We remark that robust stability is enforced.

Table 1. RMS values of the output error y.

Time Series RMS values of y

Open Loop 0.3540

LTI Feedback Controller (µ-synthesis) 0.2099

Robust Adaptive Scheme 0.0477
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Fig. 4. Top Plot: Time Series. Bottom Plot: ‖wco(k)‖�2 .

5. CONCLUSIONS

In this paper we derived a sufficient condition and presented

a method for enforcing robust stability on the AIC scheme.

This was done by formulating a convex optimization problem

that can be solved recursively using a modified RLS algo-

rithm which preserves the convergence properties of the orig-

inal RLS algorithm. The effectiveness of this approach was

demonstrated on a laser beam jitter control experiment.
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