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ABSTRACT

Lagrange-type variable fractional-delay (VFD) filters are simple and
fundamental tools for high-resolution image interpolation. In this
paper, we first reveal and theoretically prove the coefficient-symmetry

of odd-order Lagrange-type VFD filters, and then exploit the coefficient-

symmetry in implementing the VFD filters. We show that the odd-
order Lagrange-type VFD filters can be efficiently implemented as
the Farrow structure and even-odd structure, whose subfilters have
mostly symmetric or antisymmetric coefficients. Thus, the storage
cost for the subfilter coefficients can be reduced by 50%, and the
number of multiplications required for VFD filtering can also be re-
duced by 50%, which facilitates high-speed signal processing.

1. INTRODUCTION

Digital filters with variable fractional group-delay (or phase-delay)

are referred to as variable fractional-delay (VFD) digital filters, which
have been found useful in various signal processing applications

suchas comb filter design, digital communications, high-performance
speech coding, and sampling rate conversion. Among the devel-

oped methods for designing VFD filters [1]-[6], frequency-domain

approaches can achieve higher design accuracy than time-domain

approaches using interpolating polynomials [1]. However, because

polynomial interpolator can be used to derive a simple Lagrange-

type VFD FIR filter, which exhibits the maximally flat delay at low

frequencies, the Lagrange-type VFD filter is still an attractive candi-

date for many applications where the digital signal to be delayed (or

interpolated) contains relatively low frequency components [1, 2].

In [3], we have proved the coefficient-symmetry of even-order
Lagrange-type VFD filters and demonstrated that the coefficient-
symmetry can be exploited for efficiently implementing even-order
Lagrange-type VFD filters. In this paper, we first reveal and theoret-
ically prove the coefficient-symmetry of odd-order Lagrange-type
VED FIR filters, and then show that the coefficient-symmetry can
be efficiently exploited for implementing odd-order Lagrange-type
VED filters as the well-known Farrow structure and the more effi-
cient even-odd structure whose subfilters mostly have either sym-
metric or antisymmetric coefficients. This leads to a 50% reduction
of the hardware cost for storing the subfilter coefficients. Further-
more, the number of multiplications required in the VFD filtering
process can also be reduced by 50%; thus fast on-line tuning is pos-
sible.
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2. COEFFICIENT-SYMMETRY

The Lagrange-type VFD filter can be expressed as

N1
H(zp)= Y cmlp)z " )
m=—Ng
with coefficients
N1
I e-9
i=—Ng,i#m

_1)N1—m(N1 — m)'(Ng + m)'
where p denotes the variable fractional-delay, p € [—N2, N1], N1
and N» are positive integers. If N1 = N», then the VFD filter order
N = 2N is even [3], and if N1 = N3 + 1, then the VFD filter
order N = Nj 4+ N2 = 2N> + 1 is odd. Since odd-order Lagrange-
type VFD filters are also useful in signal processing applications,
it is necessary to develop new coefficient-symmetries for efficiently
implementing the odd-order Lagrange-type VFD filters. This section
reveals the coefficient-symmetry and provides a rigorous proof.

For N odd, the VFD filter coefficients ¢, (p) in (2) can be ex-
pressed as normal 1-D polynomials of the VFD parameter p,

N
cm(p) = b(m, k)p*
k=
K'0 K (3)
— Z b(m, 2k)p* + Zb(m, 2k + 1)p2+t
k=0 k=0
with N1
K:T_:NQ, —Ny <m < Nj.

Therefore, we have the following theorem.

Theorem: The coefficients of the polynomial (3) have the symmetry
b(—m, 2k) = b(m, 2k), for —N2 < m < N»

( form:N1:N2+1 (4)
for —No <m < N;

m,2k) =0,
b(m,0) = 6(m),

where 6(m) is the unit impulse. Furthermore,

b(m,N) = —b(—m+1,N), for—Na<m<N; (5)
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Proof: see appendix.

3. VFD FILTER IMPLEMENTATION

The coefficient-symmetries (4) and (5) can be exploited for effi-
ciently implementing odd-order Lagrange-type VFD filters as the
Farrow structure and even-odd structure as follows. Substituting (25)
of the appendix into (1) yields

K K41
H(z,p) =1+ Y F(z)p™ + > Ge(2)p™ " (©6)
k=1 k=1
where the subfilters F(z) and G(z) are defined as
Na
Fi(z) = Z b(m,2k)z"™, k=12 K
m=—Ny
N1
Gr(z)= > bm2k—1)z"", k=12 (K+1).
m=—Ny

)

Fig. 1 and Fig. 2 illustrate the Farrow structure (N2 = 1) and even-
odd structure (N2 = 2). The subfilters have the following interesting
properties.

1) The order of Fj(z) is not (2N2 + 1), but 2N2 because
b(N1,2k) =0,  fork=1,2--- K

which reduces one addition and one multiplication required
for computing the output of Fi(z).

2) The subfilters F(z) are zero-phase because their coefficients
are symmetric, each F(z) contains only (N2 + 1) indepen-
dent coefficients, and only (N2 + 1) multiplications are re-
quired for obtaining the output. Hence, the number of multi-
plications is reduced by 50%,

3) The last subfilter Gk +1(2) is linear-phase because it has an-
tisymmetric coefficients. Consequently, the number of multi-
plications required for computing the output of Gx 4+1(2) can
be reduced by 50%.

0Odd-Order Example

To illustrate the coefficient properties (4) and (5), we consider the
case N2 = 2,i.e., N1 = 3, and the order of the Lagrange-type VFD
filter is N = 5. For simplicity, we write the coefficients b(m, k) in
matrix form as

Bo = [b(m, k)]
where —2 < m < 3,and 0 < k£ < 5. Applying the Matlab function
poly to (2) gets the coefficient matrix

0 0.050 —0.042 —0.042 0.042 —0.008

0 —0.500 0.667 —0.042 —0.167 0.042

B. — 1 -0.333 —1.250 0.417 0.250 —0.083
°7 1o 1.000 0.667 —0.583 —0.167 0.083

0 -0.250 —0.042 0.292 0.042 —0.042

0 0.033 0 —0.042 0 0.008

By observing each column of B,, we know that the coefficient ma-
trix B, satisfies the coefficient-symmetry stated in (4) and (5).

4. CONCLUSIONS

In this paper, we have revealed and rigorously proved the coefficient-
symmetry of odd-order Lagrange-type VFD filters. Through exploit-
ing the coefficient-symmetry, the odd-order Lagrange-type VFD fil-
ters can be efficiently implemented as the Farrow structure and even-
structure whose subfilters have mostly either symmetric or antisym-
metric coefficients. As a result, the hardware cost for storing the
independent subfilter coefficients and the number of multiplications
required for computing the subfilter outputs can be reduced by 50%,
which facilitates high-speed VFD filtering.

5. APPENDIX
PROOF OF THEOREM

We first consider the case m = N;j. If m = N, then (2) becomes

No

IT -9

em(p) = en (p) = (—1)N1—N:Z:f1 = N)I(N2 + Ny)!

Na
p[]@* -
_ =1

N!
which contains only odd-degree terms like p, p®, p°, - - - , p™ . There-
fore, it is clear from (3) that
b(N1,2k) =0, fork=0,1,2,--- | K. 8)

Next, let us consider the relation between b(m, 2k) and b(—m, 2k)
for —N2 < m < No. In this case, because m # Ny, the expression
(2) reduces to

N2
w-N) [ @-9)
i=—Na,i#m
m(p) = . 9
em(p) (=1)M1=m(Ny — m)!(N2 +m)! i
For simplicity, we denote the numerator of (9) as
Na
Qup)=@-N) J[ @-9 (10)
i=—Ng,i#m
and the denominator as
Am = (=) (Ny — m)!(N2 4+ m)!. (11)

Substituting N1 = N2 + 1 into (11), we can rewrite A\, as

(=1)M "™ (Ny + 1 — m)!I(Na + m)!
(*1)1\’1*”(1\72*m)!(N2+m)!(N2+1,m) (12)
()M TNy — m){(N2 +m)|(N1 — m).

Am

Below, we consider the cases m = 0and m # 0, but m # Ni.

First, if m = 0, then @ (p) can be further simplified as

N2

Qn(p) = Qo(p) = 0 — M) [[0* - ) (13)

i=1
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and \,,, becomes

A = o = (D) (NN
Hence,
(- N) [0 -
cO(p) — QO(p) — i=1 (]4)
)\0 (—1)N1 (NQ!)2N1

Obviously, co(p) contains both even- and odd-degree terms of p
(also including a constant term).
If m # 0, then Q. (p) in (10) can be rewritten as

QuP)=@-N)p+m)-p [[ - a9
i=1,i%|m|
Denoting
=p H (»* —i
i=1,i%|m|
we have
Qm(p) = [(0° = N1m) — (N1 — m)p] O (p)
and thus
C@:@mL:[W—MM—we>ﬂ%w
" A (F)NMm(Ny — m)(Na + m)! (N7 — (1)6 )

Since O, (p) contains only odd-degree terms, c.,(p) can be sepa-
rated to even- and odd-degree terms as

em(p) = cin(p) + chn(p) (17)
with

N —(N1 —m)p- Om(p)
cm(p) = (—1)Ni=m(Ny — m)!|(Na + m)!(N1 — m)

B —p - Om(p)

= COM (N —m) (Vs + m)! (18)
& () = (p* = N1m)Om(p)
" (=1)M=m (N2 —m)!(N2 +m)! (N1 —m)

where c¢;,,(p) and c;, (p) represent the even- and odd-degree terms
of p in ¢m (p), respectively. Similarly, we obtain from (17) and (18)
that

c—m(p) = () + m(p) (19)
with
& _ _pO ( )
) TR () o)
&) = (p° + N1m)O_n (p)

(=1)NiAm (N2 + m)!(No — m){(N1 +m)’

By considering

N2
O-m)=p ] - =» H (p* = i*) = Om(p)
i=1,i#|—m| i=1,i7#|m|

and
()M = ()N ) = (T

it is clear from (18) and (20) that

-» [ -
e e . i=1,i%|m)|
en(p) = mP) = MmN Ve gyt 2V
and
p@*—Nm) [ 0 -4
& (p) = i=1,i%|m]|
m (—D)Mi=m(Ny — m)[(Ns + m)!(N1 — m)
p@* +Nm) [ @ -4
o . i=1,i#|m|
cm(p) = (_1)N1—m(N2 _ m)!(N2 T m)!(Nl T m)'

Equation (21) indicates that ¢,»(p) and c—_n(p) have exactly the
same even-degree terms of p, namely,
b(—m, 2k) = b(m, 2k), for —N2 < m < Na

but no constant terms, i.e., in (3),

b(m,0) =0, form # 0. (22)
For m = 0, we have
K K
= (0, 2k)p™ + ) b(0,2k+ )™ (23)
k=0 k=0
Substituting p = 0 into (14), we obtain
N3
(=Ny) - (=) ][4
0) = =l .
CO( ) (71)1\71 (NQ!)2N1
On the other hand, substituting p = 0 into (23) leads to
60(0) = b(O, 0)
As aresult,
b(0,0) = 24
Combining (22) with (24) and (8) yields
b(m,0) = §(m), for —Ny <m < Nj.
Hence, the ¢, (p) in (3) can be simplified as
K K
Cm +Z b(m, 2k)p Z b(m, 2k+1)p*+t. (25)
k=1 k=0

Summarizing the above results yields (4).
The coefficient-symmetry (4) is only for even-degree terms, i.e.,
the terms including p°, p?, p*,-- -, p?™2. Next, let us consider the
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odd-degree terms, i.e., the terms including p, p3, p57 sy pN . We
start with
N1
II @-9
26
i=—Ny,i#m _ Q’"l(p) ( )

cm(p) = (=1)N1i=m(Ny — m)!(Na + m)!

Am

and consider the relation between ¢, (p) and ¢—m+1(p) for —No <
m < Ni, from which we can prove the coefficient-symmetry (5) for
the N'th degree terms p” .

Since

A1 = (—1)N1+m71(N1 +m — 1)!(N2 —m + 1)'

= —)\m
we have
C—7n+1(p) _ Q;’f_ﬂ;i(lp) — Q*ln;\;i(p)
with
N1
Q-m+1(p) = I  ©o-»

—(=)M (N} — m)(Na + m)!

i=— Ny i (—m+1)

By performing the substitution

we obtain

Q-m+1(p) =

As aresult,

C—m-H(p) =

It is clear from (26) and (28) that a general coefficient-symmetry
does not exist for the coefficients of the polynomials ¢y, (p) and

i=—i+1

—Ni+1 Ny
I e+i-v= ]I
i/ =(Na+1),i' #m i=—Na,i%m
Ny

[I p+a-v

i=—Ng,i#m

—Am

= ()N ()P (Vs m)! (V) — m)!

@n

[p+ (i—1)].

(1]

(2]

(28)

c—m+1(p), but only one exception is the case for the Nth degree
terms of p. Since Qm (p) and Q—m+1(p) have the same coefficient
for the term pN , i.e., the coefficient is 1, thus the coefficients of
¢m(p) and c_m+1(p) for p™ are 1/\y, and (—1/\y,), respectively.

Consequently,

we know from (3) that

b(m,N) = —b(—m +1,N) =

1
Am

(4]

(5]

which corresponds to (5). This completes the proof of the theorem.

(6]

I - 567

Input

G2(2)| |[F1(@) | |G 1(2)

N/

Jan
A%
=

Jan
A%
o

a

Output

Fig. 1. Farrow structure for odd-order case (N2 = 1).
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Fig. 2. Even-odd structure for odd-order case (N2 = 2).
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