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ABSTRACT

Lagrange-type variable fractional-delay (VFD) filters are simple and

fundamental tools for high-resolution image interpolation. In this
paper, we first reveal and theoretically prove the coefficient-symmetry

of odd-order Lagrange-type VFD filters, and then exploit the coefficient-
symmetry in implementing the VFD filters. We show that the odd-
order Lagrange-type VFD filters can be efficiently implemented as

the Farrow structure and even-odd structure, whose subfilters have
mostly symmetric or antisymmetric coefficients. Thus, the storage
cost for the subfilter coefficients can be reduced by 50%, and the

number of multiplications required for VFD filtering can also be re-
duced by 50%, which facilitates high-speed signal processing.

1. INTRODUCTION

Digital filters with variable fractional group-delay (or phase-delay)
are referred to as variable fractional-delay (VFD) digital filters, which

have been found useful in various signal processing applications
such as comb filter design, digital communications, high-performance

speech coding, and sampling rate conversion. Among the devel-
oped methods for designing VFD filters [1]-[6], frequency-domain
approaches can achieve higher design accuracy than time-domain

approaches using interpolating polynomials [1]. However, because
polynomial interpolator can be used to derive a simple Lagrange-
type VFD FIR filter, which exhibits the maximally flat delay at low

frequencies, the Lagrange-type VFD filter is still an attractive candi-
date for many applications where the digital signal to be delayed (or

interpolated) contains relatively low frequency components [1, 2].

In [3], we have proved the coefficient-symmetry of even-order
Lagrange-type VFD filters and demonstrated that the coefficient-

symmetry can be exploited for efficiently implementing even-order
Lagrange-type VFD filters. In this paper, we first reveal and theoret-
ically prove the coefficient-symmetry of odd-order Lagrange-type

VFD FIR filters, and then show that the coefficient-symmetry can
be efficiently exploited for implementing odd-order Lagrange-type
VFD filters as the well-known Farrow structure and the more effi-

cient even-odd structure whose subfilters mostly have either sym-
metric or antisymmetric coefficients. This leads to a 50% reduction

of the hardware cost for storing the subfilter coefficients. Further-
more, the number of multiplications required in the VFD filtering
process can also be reduced by 50%; thus fast on-line tuning is pos-

sible.

2. COEFFICIENT-SYMMETRY

The Lagrange-type VFD filter can be expressed as

H(z, p) =

N1∑
m=−N2

cm(p)z−m
(1)

with coefficients

cm(p) =

N1∏
i=−N2 ,i�=m

(p− i)

(−1)N1−m(N1 − m)!(N2 + m)!
(2)

where p denotes the variable fractional-delay, p ∈ [−N2, N1], N1

and N2 are positive integers. If N1 = N2, then the VFD filter order
N = 2N1 is even [3], and if N1 = N2 + 1, then the VFD filter

order N = N1 + N2 = 2N2 + 1 is odd. Since odd-order Lagrange-
type VFD filters are also useful in signal processing applications,
it is necessary to develop new coefficient-symmetries for efficiently

implementing the odd-order Lagrange-type VFD filters. This section
reveals the coefficient-symmetry and provides a rigorous proof.

For N odd, the VFD filter coefficients cm(p) in (2) can be ex-
pressed as normal 1-D polynomials of the VFD parameter p,

cm(p) =

N∑
k=0

b(m, k)pk

=

K∑
k=0

b(m, 2k)p2k +

K∑
k=0

b(m, 2k + 1)p2k+1

(3)

with

K =
N − 1

2
= N2, −N2 ≤ m ≤ N1.

Therefore, we have the following theorem.

Theorem: The coefficients of the polynomial (3) have the symmetry{
b(−m, 2k) = b(m, 2k), for −N2 ≤ m ≤ N2

b(m, 2k) = 0, for m = N1 = N2 + 1
b(m, 0) = δ(m), for −N2 ≤ m ≤ N1

(4)

where δ(m) is the unit impulse. Furthermore,

b(m, N) = −b(−m + 1, N), for −N2 ≤ m ≤ N1 (5)
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Proof: see appendix.

3. VFD FILTER IMPLEMENTATION

The coefficient-symmetries (4) and (5) can be exploited for effi-

ciently implementing odd-order Lagrange-type VFD filters as the
Farrow structure and even-odd structure as follows. Substituting (25)
of the appendix into (1) yields

H(z, p) = 1 +

K∑
k=1

Fk(z)p2k +

K+1∑
k=1

Gk(z)p2k−1
(6)

where the subfilters Fk(z) and Gk(z) are defined as

Fk(z) =

N2∑
m=−N2

b(m, 2k)z−m, k = 1, 2, · · · , K

Gk(z) =

N1∑
m=−N2

b(m, 2k − 1)z−m, k = 1, 2, · · · , (K + 1).

(7)

Fig. 1 and Fig. 2 illustrate the Farrow structure (N2 = 1) and even-
odd structure (N2 = 2). The subfilters have the following interesting

properties.

1) The order of Fk(z) is not (2N2 + 1), but 2N2 because

b(N1, 2k) = 0, for k = 1, 2, · · · , K

which reduces one addition and one multiplication required

for computing the output of Fk(z).

2) The subfilters Fk(z) are zero-phase because their coefficients

are symmetric, each Fk(z) contains only (N2 + 1) indepen-
dent coefficients, and only (N2 + 1) multiplications are re-
quired for obtaining the output. Hence, the number of multi-

plications is reduced by 50%,

3) The last subfilter GK+1(z) is linear-phase because it has an-

tisymmetric coefficients. Consequently, the number of multi-
plications required for computing the output of GK+1(z) can

be reduced by 50%.

Odd-Order Example

To illustrate the coefficient properties (4) and (5), we consider the

case N2 = 2, i.e., N1 = 3, and the order of the Lagrange-type VFD
filter is N = 5. For simplicity, we write the coefficients b(m, k) in

matrix form as
Bo = [b(m, k)]

where −2 ≤ m ≤ 3, and 0 ≤ k ≤ 5. Applying the Matlab function
poly to (2) gets the coefficient matrix

Bo =

⎡
⎢⎢⎢⎢⎣

0 0.050 −0.042 −0.042 0.042 −0.008
0 −0.500 0.667 −0.042 −0.167 0.042
1 −0.333 −1.250 0.417 0.250 −0.083
0 1.000 0.667 −0.583 −0.167 0.083
0 −0.250 −0.042 0.292 0.042 −0.042
0 0.033 0 −0.042 0 0.008

⎤
⎥⎥⎥⎥⎦ .

By observing each column of Bo, we know that the coefficient ma-

trix Bo satisfies the coefficient-symmetry stated in (4) and (5).

4. CONCLUSIONS

In this paper, we have revealed and rigorously proved the coefficient-
symmetry of odd-order Lagrange-type VFD filters. Through exploit-
ing the coefficient-symmetry, the odd-order Lagrange-type VFD fil-

ters can be efficiently implemented as the Farrow structure and even-
structure whose subfilters have mostly either symmetric or antisym-

metric coefficients. As a result, the hardware cost for storing the
independent subfilter coefficients and the number of multiplications
required for computing the subfilter outputs can be reduced by 50%,

which facilitates high-speed VFD filtering.

5. APPENDIX
PROOF OF THEOREM

We first consider the case m = N1. If m = N1, then (2) becomes

cm(p) = cN1(p) =

N2∏
i=−N2

(p − i)

(−1)N1−N1(N1 − N1)!(N2 + N1)!

=

p

N2∏
i=1

(p2 − i2)

N !

which contains only odd-degree terms like p, p3, p5, · · · , pN . There-
fore, it is clear from (3) that

b(N1, 2k) = 0, for k = 0, 1, 2, · · · , K . (8)

Next, let us consider the relation between b(m, 2k) and b(−m, 2k)
for −N2 ≤ m ≤ N2. In this case, because m �= N1, the expression

(2) reduces to

cm(p) =

(p − N1)

N2∏
i=−N2 ,i�=m

(p− i)

(−1)N1−m(N1 − m)!(N2 + m)!
. (9)

For simplicity, we denote the numerator of (9) as

Qm(p) = (p− N1)

N2∏
i=−N2 ,i�=m

(p− i) (10)

and the denominator as

λm = (−1)N1−m(N1 − m)!(N2 + m)!. (11)

Substituting N1 = N2 + 1 into (11), we can rewrite λm as

λm = (−1)N1−m(N2 + 1 − m)!(N2 + m)!

= (−1)N1−m(N2 − m)!(N2 + m)!(N2 + 1− m)

= (−1)N1−m(N2 − m)!(N2 + m)!(N1 − m).

(12)

Below, we consider the cases m = 0 and m �= 0, but m �= N1.
First, if m = 0, then Qm(p) can be further simplified as

Qm(p) = Q0(p) = (p− N1)

N2∏
i=1

(p2 − i2) (13)

III ­ 565



and λm becomes

λm = λ0 = (−1)N1(N2!)
2N1.

Hence,

c0(p) =
Q0(p)

λ0
=

(p− N1)

N2∏
i=1

(p2 − i2)

(−1)N1(N2!)2N1
. (14)

Obviously, c0(p) contains both even- and odd-degree terms of p
(also including a constant term).

If m �= 0, then Qm(p) in (10) can be rewritten as

Qm(p) = (p − N1)(p + m) · p
N2∏

i=1,i�=|m|
(p2 − i2). (15)

Denoting

Om(p) = p

N2∏
i=1,i�=|m|

(p2 − i2)

we have

Qm(p) =
[
(p2 − N1m) − (N1 − m)p

]
Om(p)

and thus

cm(p) =
Qm(p)

λm
=

[
(p2 − N1m) − (N1 − m)p

]
Om(p)

(−1)N1−m(N2 − m)!(N2 + m)!(N1 − m)
.

(16)
Since Om(p) contains only odd-degree terms, cm(p) can be sepa-
rated to even- and odd-degree terms as

cm(p) = ce
m(p) + co

m(p) (17)

with

ce
m(p) =

−(N1 − m)p · Om(p)

(−1)N1−m(N2 − m)!(N2 + m)!(N1 − m)

=
−p · Om(p)

(−1)N1−m(N2 − m)!(N2 + m)!

co
m(p) =

(p2 − N1m)Om(p)

(−1)N1−m(N2 − m)!(N2 + m)!(N1 − m)

(18)

where ce
m(p) and co

m(p) represent the even- and odd-degree terms
of p in cm(p), respectively. Similarly, we obtain from (17) and (18)

that

c−m(p) = ce
−m(p) + co

−m(p) (19)

with

ce
−m(p) =

−pO−m(p)

(−1)N1+m(N2 + m)!(N2 − m)!

co
−m(p) =

(p2 + N1m)O−m(p)

(−1)N1+m(N2 + m)!(N2 − m)!(N1 + m)
.

(20)

By considering

O−m(p) = p

N2∏
i=1,i�=|−m|

(p2 − i2) = p

N2∏
i=1,i�=|m|

(p2 − i2) = Om(p)

and

(−1)N1+m = (−1)N1−m · (−1)2m = (−1)N1−m

it is clear from (18) and (20) that

ce
m(p) = ce

−m(p) =

−p2

N2∏
i=1,i�=|m|

(p2 − i2)

(−1)N1−m(N2 − m)!(N2 + m)!
(21)

and

co
m(p) =

p(p2 − N1m)

N2∏
i=1,i�=|m|

(p2 − i2)

(−1)N1−m(N2 − m)!(N2 + m)!(N1 − m)

co
−m(p) =

p(p2 + N1m)

N2∏
i=1,i�=|m|

(p2 − i2)

(−1)N1−m(N2 − m)!(N2 + m)!(N1 + m)
.

Equation (21) indicates that cm(p) and c−m(p) have exactly the

same even-degree terms of p, namely,

b(−m, 2k) = b(m, 2k), for −N2 ≤ m ≤ N2

but no constant terms, i.e., in (3),

b(m, 0) = 0, for m �= 0. (22)

For m = 0, we have

c0(p) =

K∑
k=0

b(0, 2k)p2k +

K∑
k=0

b(0, 2k + 1)p2k+1. (23)

Substituting p = 0 into (14), we obtain

c0(0) =

(−N1) · (−1)N2

N2∏
i=1

i2

(−1)N1 (N2!)2N1
= 1.

On the other hand, substituting p = 0 into (23) leads to

c0(0) = b(0, 0).

As a result,

b(0, 0) = 1. (24)

Combining (22) with (24) and (8) yields

b(m, 0) = δ(m), for −N2 ≤ m ≤ N1.

Hence, the cm(p) in (3) can be simplified as

cm(p) = δ(m)+

K∑
k=1

b(m, 2k)p2k +

K∑
k=0

b(m, 2k+1)p2k+1 . (25)

Summarizing the above results yields (4).

The coefficient-symmetry (4) is only for even-degree terms, i.e.,

the terms including p0, p2, p4, · · · , p2N2 . Next, let us consider the
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odd-degree terms, i.e., the terms including p, p3, p5, · · · , pN . We
start with

cm(p) =

N1∏
i=−N2 ,i�=m

(p − i)

(−1)N1−m(N1 − m)!(N2 + m)!
=

Qm(p)

λm

(26)

and consider the relation between cm(p) and c−m+1(p) for −N2 ≤
m ≤ N1, from which we can prove the coefficient-symmetry (5) for

the N th degree terms pN .
Since

λ−m+1 = (−1)N1+m−1(N1 + m − 1)!(N2 − m + 1)!

= (−1)N1−m · (−1)2m−1 · (N2 + m)!(N1 − m)!

= −(−1)N1−m(N1 − m)!(N2 + m)!

= −λm

we have

c−m+1(p) =
Q−m+1(p)

λ−m+1
=

Q−m+1(p)

−λm
(27)

with

Q−m+1(p) =

N1∏
i=−N2,i�=(−m+1)

(p − i).

By performing the substitution

i′ = −i + 1

we obtain

Q−m+1(p) =

−N1+1∏
i′=(N2+1),i′ �=m

(p + i′ − 1) =

N1∏
i=−N2,i�=m

[p + (i − 1)] .

As a result,

c−m+1(p) =

N1∏
i=−N2 ,i�=m

[p + (i − 1)]

−λm
. (28)

It is clear from (26) and (28) that a general coefficient-symmetry
does not exist for the coefficients of the polynomials cm(p) and
c−m+1(p), but only one exception is the case for the N th degree

terms of p. Since Qm(p) and Q−m+1(p) have the same coefficient
for the term pN , i.e., the coefficient is 1, thus the coefficients of
cm(p) and c−m+1(p) for pN are 1/λm and (−1/λm), respectively.

Consequently, we know from (3) that

b(m, N) = −b(−m + 1, N) =
1

λm

which corresponds to (5). This completes the proof of the theorem.
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Fig. 1. Farrow structure for odd-order case (N2 = 1).
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Fig. 2. Even-odd structure for odd-order case (N2 = 2).
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