
SIMULTANEOUS TRACKING OF THE BEST BASIS IN REDUCED-RANK WIENER FILTER

Toshihisa Tanaka

Tokyo Univ. of Agriculture & Technology
184-8588 Japan. tanakat@cc.tuat.ac.jp

Simone Fiori
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ABSTRACT

A new on-line learning algorithm that yields a reduced-rank Wiener
filter (RRWF) is proposed. The RRWF is defined as the matrix of
prescribed rank that provides the best least-squares approximation
of a given signal. This implies that an RRWF determines only a
subspace, but is not endowed with information of basis functions
or axes for the subspace. In other words, even if we want to reduce
the rank of the estimated RRWF, we should learn another RRWF
of “more reduced rank” again. Our goal in this paper is therefore to
establish a learning rule that simultaneously tracks basis functions
yielding a matrix that gives an RRWF. To this end, we reformulate
the optimization problem of RRWFs, which will be solved by a
gradient-based algorithm derived within the framework of differ-
ential geometry. Numerical examples are illustrated to support the
proposals in the paper.

1. INTRODUCTION

The well-known Wiener filter (WF) is known as an operator that
gives the optimal approximation of the observation to the original
signal in the sense of mean square error [1]. Let x ∈ Rn and y ∈ Rm

be the original and the observed signals, respectively. Generally,
x is unknown, but the correlation matrix of y, denoted as Ryy ∈
R

m×m, and the cross-correlation matrix between x and y, denoted
as Rxy ∈ Rn×m, are known or can be estimated. In the paper, we
also make use of Ryx = RT

xy. The WF is given as a solution of the
approximation problem to minimize the following cost function:

J[P] =
1
2

E‖x − Py‖2 = 1
2

tr[Rxx − 2PRyx + PRyyPT ], (1)

with P ∈ Rn×m. We can explicitly solve this problem and the WF
is given by the matrix:

PWF = arg min
P∈Rn×m J[P] = RxyR−1

yy . (2)

The estimated signal by the WF is given by PWFy.
An extension of the WF may be obtained by fixing the rank of

P, denoted by r, which is smaller than min(m, n). When J[P] is
minimized under the rank constraint , rank(P) = r, the minimizer
of the optimization problem given by

P(r)
RRWF = arg min

rank(P)=r
J[P] (3)

is termed a reduced-rank Wiener filter (RRWF) of rank r [2, 3].
The RRWF can be regarded as a realization of the reduced-rank
regression model [2, 3], which describes the input-output relation
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in mobile communication systems with sensor array and of linear
signal/image restoration. We can solve this minimization problem
and obtain the solution in closed-form as [3]:

P(r)
RRWF = UrUT

r PWF, (4)

where Ur is the matrix whose columns are the first r columns of Ū
in Rn, which is the unitary eigenmatrix associated with the eigen-
value decomposition of RxyR−1

yy Ryx.
For applications to adaptive systems such as communication

systems, we need an adaptive learning algorithm. Hua et al.[3]
proposed to represent an RRWF denoted by P(r) (for sake of sim-
plicity and convenience, an RRWF is written as P(r), instead of
P(r)

RRWF, hereafter.) as the product of two matrices, P(r) = ABT ,
where A ∈ Rn×r and B ∈ Rm×r, and to alternatively calculate A and
B. The idea in [3] is to change the original minimization problem
to the following one:

(A, B)(r) = arg min
A∈Rn×r ,B∈Rm×r J[A, B], (5)

where

J[A, B] =
1
2

tr[Rxx − 2ABT Ryx + ABT RyyBAT ]. (6)

Then, ∂J
∂A = 0 and ∂J

∂B = 0 are alternatively solved. However, this
is a batch algorithm, not a fully on-line algorithm. Moreover, A
and B are not uniquely determined because P(r) = ACC−1BT with
any invertible C ∈ Rr×r. This property is crucial especially for on-
line estimation, since in wireless communication systems, the rank
can dynamically change and if it varies, then we should learn the
RRWF of the new rank again.

The objective of this paper is to newly establish a learning
algorithm for RRWFs in such a way that even if the rank of an
RRWF changes or is more reduced, it is unnecessary to reset the
current estimation of the RRWF and re-learning another RRWF of
new rank. To this end, we consider an RRWF as an operator that
gives the best approximation to the original signal. Specifically,
we describe an estimated signal by the RRWF as the superposi-
tion of orthonormal basis functions, which should be simultane-
usly tracked on-line. A similar idea is the canonical component
estimation [3]. The algorithm extracts a rank-1 matrix whose sum
is an RRWF; however the extraction is one-by-one manner, not
in a simultaneous way, and doesn’t focus on the basis functions.
In this paper, then, we propose a new cost function for obtaining
an RRWF including information of the orthonormal basis for the
range of the RRWF by introducing the unitary constratint on one
matrix to be optimized. To do this, we derive the gradient-based
algorithm by using the theory of differential geometry [4, 5]. In
the end of the paper, experimental results are shown to support the
theoretical derivation of the learning algorithm in this paper.
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2. PROBLEM FORMULATION AND COST FUNCTION

In this section, we formulate the problem to be solved in this paper.
Recall the closed-form solution described as in (4), which gives
another aspect of the RRWF. It implies that the estimated signal by
the RRWF may be rewritten by the superposition of orthonormal
basis functions, that is,

P(r)y = UrUT
r PWFy = ŪΓrŪ

T PWFy =
r∑

i=1

〈ui, PWFy〉ui, (7)

where Γr be a diagonal matrix whose diagonal elements are unity
for the first r diagonals and are 0 for the remaining diagonals, and
ui is the ith column of Ū. This observation more clearly tells us
that the problem should be to find a basis, not a subspace, giving
the best approximation to the original signal, as illustrated in Fig.
1. That is, we have to track Ur (or Ū) and to compute the RRWF
of any rank equal to or less than r.

Let us start with the factorization of P(r) by the product of U
and V, say, P(r) = UVT , where U is a column-orthogonal matrix of
size n × r and V is a matrix of size m × r. This implies that matrix
U belongs to the Stiefel manifold defined as:

St(n, r) = {U ∈ Rn×r |UTU = Ir}. (8)

Motivated by the closed-form solution as in (4), we introduce a
double-optimization problem to find out U and V, which are given
by

(U,V)(r) = arg min
U∈St(n,r),V∈Rm×r J[U,V], (9)

where

J[U,V] =
1
2

tr[Rxx − 2UVT Ryx + UVT RyyVUT ]

=
1
2

(
tr[Rxx] − tr[2VT RyxU − VT RyyV]

)
. (10)

We have just imposed more strict constraint – orthonormality – on
A in problem (5). However, the optimization problem no longer
determines the best basis functions. By introducing an arbitrary
orthogonal matrix of size r×r, Ũ, we can observe that the RRWF of
rank r has another expression given by P(r)

RRWF = UrŨ
T
ŨUT

r XWF,
which also minimize the cost function. This observation seems
similar to one in the relation between the principal/minor subspace
analysis (PSA/MSA) and the principal/minor component analysis
(PCA/MCA) [6, 7].

A key idea in the paper to solve the problem of ambiguity is to
use the following “weighted” cost function:

Ĵ[U,V] = −1
2

tr[D(2VT RyxU − VT RyyV)], (11)

where D is a r × r diagonal matrix of positive elements ordered in
descending order. It should be noted that we have removed the first
term in (10) since it will vanish by the differentiation. As we will
see, the weighted sum of the diagonal elements in the argument of
Ĵ can avoid the ambiguity. This cost function is minimized with
preserving that U is orthogonal. The derivation is accomplished
by applying techniques of differential geometry [4, 5]. In the next
section, we show mathematical preliminaries and how to obtain
the learning rule, and then the gradients for U and V are derived.

u =(Range of P )
(1)

1

u2Range of P (2)

Fig. 1. Simple illustration for our problem: if we know {ui}ri=1,
then we get {P(i)}ri=1. On the other hand, even though we know
P(r), we cannot get P(i) for i = 1, . . . , r − 1.

3. DIFFERENTIAL GEOMETRICAL DERIVATION OF
LEARNING ALGORITHMS

We derive in this section ordinary differential equations (ODEs)
providing gradient flows to solve the optimization problem. We
deal with the optimization problem in the framework of differential
geometry which is the calculus of manifolds. The key concept is
to formalize the constraints that the sought-for filter should satisfy
and to define a proper set of filters that satisfy such constraints,
which form a smooth manifold. If the filter-adaptation problem is
formulated – as it is often the case – as an optimization problem,
then optimization may be effected directly on the defined smooth
manifold. We briefly review this concept in the rest of this section.

3.1. Review of Gradient-Based Optimization on Manifolds

3.1.1. Riemannian Gradient

Let TξM be the tangent space to manifold M in point ξ ∈ M
and let (M, gM) be a Riemannian manifold, where gMξ : TξM ×
TξM → R denotes a bilinear scalar product that turns M into a
metric space. In particular, the Euclidean scalar product denoted
by ge : TξM × TξM → R is necessary to define the gradient on
a Riemannian manifold. The gradient, gradMξ f , of a differentiable
function, f :M→ R, in ξ on (M, gM) is defined by the following
two conditions [5]: 1) gradMξ f ∈ TξM (tangency condition) and

2) gMξ
(
gradMξ f , v

)
= ge

(
∂ f
∂ξ
, v
)

for all v ∈ TξM (compatibility

condition), where
∂ f
∂ξ

is the standard gradient (or Jacobian) of f .

By gradient-based differential equation for the constrained op-
timization of function f :M→ R onM, where the smooth mani-
fold,M, fully describes the constraints, it is meant:

ξ̇(t) = ±gradMξ f (ξ(t)), ξ(0) = ξ0 ∈ M, (12)

where the positive sign denotes maximization and the negative sign
denotes minimization of f .

3.1.2. Integration on a Geodesic

In order to design an effective adapting algorithm, it is necessary
to develop a suitable numerical integration method for numerically
solving the differential equation (12). In the case that the manifold
M is a flat space, like, e.g., Rn, several integration methods are
available from the literature, like, e.g., the Euler method and more
sophisticate methods like the ones belonging to the class of Runge-
Kutta integration schemes. However, in many cases of interest
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the manifoldM has the structure of a curved space: This makes
it necessary to develop customized integration methods valid for
curved spaces. A popular one is based on the concept of geodesic.
Geodesics on curved spaces replace the concept of “straight lines”
on flat spaces. Let us denote by γMξ,v(t) a geodesic on the manifold
departing from the point ξ in the direction v at point t ∈ [0, 1].

The boundary conditions write γMξ,v(0) = ξ and
d
dt
γMξ,v(0) = v. As

a geodesic is a curve completely belonging to the manifoldM, it
can be used to move within the manifold from a starting point to
an arrival point along a prescribed (tangent) direction. That is, it
may be used to solve a differential equation of the kind ξ̇(t) = g(t),
like equation (12), in the following way: ξ(n + 1) = γMξ(n),g(n)(µ(n)),
where ξ(n) denotes the obtained approximation of the exact flow
ξ(t), g(n) denotes the value of g(ξ(n)) and µ(n) plays the role of
the familiar adapting stepsize schedule. Of course, ξ(0) = ξ0.

3.2. Derivation of Riemannian Gradient for U and V

By using the framework of differential geometry reviewed in the
previous subsection, we solve the optimization problem numeri-
cally by joint gradient-based algorithms given as

U̇ = −gradSt(n,r)
U Ĵ[U,V], V̇ = −gradR

m×r
V Ĵ[U,V]. (13)

We now derive gradients for U and V. By simple differentiation,
Jacobians with respect to U and V are obtained as

∂Ĵ
∂U
= −RxyVD,

∂Ĵ
∂V
= −(RyxU − RyyV)D. (14)

We may consider for St(n, r) the well-known canonical metrics [4]
defined as

gSt(n,r)
U (H1,H2) = tr

[
HT

1

(
Ir − 1

2
UUT

)
H2

]
, (15)

∀H1,H2 ∈ TUSt(n, r). The Riemannian gradient on the Stiefel
manifold is derived via the tangency and compatibility conditions,
as described in [4]. The tangent space to the Stiefel manifold in a
given point, U ∈ St(n, r), is TUSt(n, r) = {H ∈ Rn×r |HTU+UT H =
0r}. Then, we obtain the gradient as

gradSt(n,r)
U Ĵ =

∂Ĵ
∂U
− U
(
∂Ĵ
∂U

)T
U = −RxyVD + UDVT RyxU. (16)

From (13), we obtain the ODE for U as:

U̇ = RxyVD − UDVT RyxU, (17)

To the end of geodesic-based numerical integration, we also
recall the expression of geodesic on the Stiefel manifold when this
is equipped with canonical metrics [5]:

γSt(n,r)

U,−gradSt(n,r)
U Ĵ

(t) =

⎛⎜⎜⎜⎜⎜⎝exp

⎡⎢⎢⎢⎢⎢⎣−t
⎛⎜⎜⎜⎜⎜⎝
(
∂Ĵ

∂U

)
UT − U

(
∂Ĵ
∂U

)T ⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎠U. (18)

For Rm×r, we introduce the following weighted Euclidean met-
ric:

gε̂V(H1,H2) = tr[HT
1 DH2]. (19)

Since the tangent space of the Euclidean space is itself, we can
easily derive the gradient in Rm×r with respect to gε̂V such that it

meets the tangency and the compatibility conditions. Therefore,
the gradient is given by

gradR
m×r

V Ĵ =
∂Ĵ

∂V
D−1 = −(RyxU − RyyV). (20)

It follows then from (13) that we obtain the following ODE for V:

V̇ = RyxU − RyyV. (21)

Note that since V is not on a curved space, we can use the classical
Euler-type integration to mumerically solve equation (21).

3.3. Behavior of the Joint Learning Algorithm

A simple analysis for the behavior of U and V is here given. A key
observation is the following fact, which can be shown by solving
the non-homogeneous linear ODE given as in (21).

Proposition 1 Assume that the dynamics of V is given by (21).
Then, V(t)→ R−1

yy RyxU, as t → ∞.

Proof is omitted here. A standard technique to solve non-homogeneous
linear ODEs is applicable as proof. Also, considering the fact that
this ODE is a direct deduction from the differentiation of Ĵ, we
may understand the proposition. If V = R−1

yy RxyU in (17), then it
holds that

U̇ = RxyR−1
yy RyxUD − UDUT RxyR−1

yy RyxU, (22)

which is a quite interesting consequence, since this ODE is exactly
the same as the learning algorithm for principal components of
signals with the correlation matrix given by RxyR−1

yy Ryx, proposed
by Xu [8] and analyzed in several papers [6, 7]. The following
features have been theoretically proven [6, 7]:

1. Stability on the Stiefel manifold;

2. Stability in the point where principal components are ex-
tracted.

The first property guarantees that U always varies satisfying UTU =
Ir, and a perturbation from the manifold will decay to zero. The
second one assures that U is stable if and only if U = Ur, which
meets our objective.

4. NUMERICAL EXAMPLES

The ODEs given as in (17) and (21) are numerically integrated by
the following joint update rules:

U(k + 1) = γ̂St(n,r)

U,−gradSt(n,r)
U Ĵ

(µ1(k)), (23)

V(k + 1) = V(k) + µ2(k)∆V(k), (24)

where

γ̂St(n,r)

U,−gradSt(n,r)
U Ĵ

(t) = e−t[U(k)DVT (k)y(k)xT (k)−x(k)yT (k)V(k)DUT (k)]U,(25)

∆V(k) = y(k)xT (k)U(k) − y(k)yT (k)V(k), (26)

and k is an integer index denoting a learning iteration counter.
Here, the expectation operator has been removed to employ on-
line learning, which is the reason why the notation for geodesic
denoted by γ̂St(n,r)

U,−gradSt(n,r)
U Ĵ

(t) is used in the above update rule instead

of γSt(n,r)

U,−gradSt(n,r)
U Ĵ

(t).
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Fig. 2. Behavior of the proposed learning algorithm.

In order to evaluate the performance of the the learning algo-
rithms, we introduce the following criteria:

J(k) = J[U(k),V(k)], (27)

ηU(k) = ‖UT (k)U(k) − Ir‖2F, (28)

where ‖ · ‖F denotes the Frobenius matrix norm. Moreover, we
evaluate |〈u∗i , ui(k)〉|, where u∗i and ui(k) are the ith columns of Ur

and U(k), respectively.
In the test, it is set that m = n = 4, and r = 3. Stochastic

vectors x and y were generated by the model: y = Ax + ε, where
we assumed that

Rxx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
.9 .4 .7 .3
.4 .3 .5 .4
.7 .5 1.0 .6
.3 .4 .6 .9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , A =
1
5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 2 3 4
2 3 4 5
1 −2 −3 −4
0 1 −2 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

and ε is a noise, of variance σ2 = 4, incorrelated with the signal x.
In this way, it turns out that Rxy = Rxx AT . The learning rates in the
numerical experiments are fixed to µ1(k) = 0.01 and µ2(k) = 0.001
for all k. We used the MATLAB for this simulation1.

Independent tests were performed 100 times and the ensem-
ble average is plotted in each figure. Figure 2 shows the behavior
of the proposed learning rule. The straight line in Fig. 2(a) corre-
sponds to the optimal J[P(r)]. As seen in these figures, U(k)VT (k)
quickly converges to an RRWF of rank r by preserving the orthog-
onality of the columns of matrix U(k), as can be seen in Fig. 2(b),
where ηU is consistently zero. On the other hand, it can be seen in
Fig. 2(c) that the convergence of U(k) is relatively slow; however,
it definitely approaches Ur, which implies that an RRWF of any
rank less than r can be obtained by eliminating right columns of
U(k). It follows from this observation that we succeeded in obtain-
ing the “best” orthonormal basis for the subspace (the whole space
in this experiment) spanned by the RRWF.

Although we used in this paper the geodesic-based integration,
we can also apply the classical Euler method for the numerical in-
tegration of ODEs, which may be regarded as a first-order approx-
imation of the geodesic-based one. We confirmed that this Euler
integration is also stable and gets converged, though orthogonality
νU is relatevely larger.

1The expm was used to calculate the matrix exponential in (25).

5. CONCLUSION

This paper has presented a novel on-line learning algorithm that
can estimate not only an RRWF of rank r, but also find out a basis
for the r-dimensional subspace spanned by the RRWF. Therefore,
one can obtain rank-1 to rank-r RRWFs just from the estimated
matrices. We have theoretically analyzed the behavior of the pro-
posed learning algorithms and have shown numerical examples.
Future work might focus on applications to communication sys-
tems as well as signal restoration. Moreover, the development of
learning algorithms for reduced-rank general filters would be an
open problem.
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