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ABSTRACT

Interleavers used to be considered with a temporal approach. Hence,
no work has ever proposed a theoretical study of the frequency ef-
fect of an interleaver and we propose here to address this issue. This
work is chie�y motivated by the recent use of interleavers as a Spread
Spectrum tool. For that purpose, we �rst point out the equivalence
between Periodic Clock Changes (PCC) and interleavers. Further-
more, because of its Linear Periodic Time Varying (LPTV) nature,
a PCC turns any Wide Sense Stationary (WSS) process into a Wide
Sense Cyclostationary process (WSC). Then, we propose to station-
arize the output of a PCC in order to derive a theoretical expression
of the output Power Spectral Density (PSD). Thanks to the previ-
ous equivalence, this result can be applied to any interleaver and we
propose to investigate the frequency effect of the matrix interleaver.

1. INTRODUCTION

Linear Periodic Time Varying (LPTV) �lters are characterized by a
periodical time varying impulse response [1]. A property of these
�lters is to turn a Wide Sense Stationary (WSS) process into a Wide
Sense Cyclostationary (WSC) [2] process that can be characterized
by a periodical autocorrelation function as well as a bispectrum in
the frequency domain [3].

In addition, [4] introduced the de�nition of Periodical Clock
Changes (PCC). PCC turn out to constitute a particular subset of
the LPTV �lters. Furthermore, we will point out in this paper that
there is an equivalence between digital PCC and interleavers.

Otherwise, LPTV �lters exhibit the property of spectrum spread-
ing when processing an oversampled signal. Hence, recent works
[5], [6], [7] propose methods to achieve a Spread Spectrum Mul-
tiuser System based on LPTV �lters. In [7], a method is proposed to
design an orthogonal set of LPTV �lters relying on a kernel LPTV
�lter. In addition, simulations point out that the use of a matrix inter-
leaver as a kernel LPTV �lter results in good performance in terms
of multiuser interferences. However, in [7], no theoretical consid-
eration was proposed for the spreading ef�ciency of the matrix in-
terleaver. More generally, given any interleaver, no work has ever
theoretically studied the effect of this interleaver on the input Power
Spectral Density (PSD).

In this paper, we propose to address this issue. As a particular
LPTV �lter, a PCC turns a WSS process into a WSC process. Re-
lying on results in [3], we propose to stationarize the output of any
PCC. This derivation leads to an expression of the stationarized au-
tocorrelation according to the PCC function. Because of the equiv-
alence between PCC and interleavers, this result is of interest since
it �nally enables to express the effect of any interleaver on the input
PSD. Applied to the matrix interleaver, we propose to discuss the
in�uence of the dimension of this interleaver on the spectral effect.

Section 2 is devoted to a review of LPTV �lters, PCC and inter-
leavers. In addition, the LPTV nature of PCC as well as the equiva-
lence between digital PCC and interleavers are pointed out. Section
3 proposes the general expression of the stationarized autocorrela-
tion at the output of any PCC. In a spread spectrum framework, sec-
tion 4 makes the most of this result to discuss the frequency effect
of the matrix interleaver. Finally, section 5 presents simulations to
validate the theoretical results.

2. LPTV FILTERS, PCC AND INTERLEAVERS

After introducing some de�nitions, we will point out the LPTV na-
ture of PCC as well as the equivalence between digital PCC and
interleavers.

2.1. LPTV �lters

An LPTV �lter is a �lter whose impulse response is periodically
time varying [1]. Thus, if we denote ���� �� as the impulse response
of an � periodic LPTV �lter, the output ���� is related to the input
���� according to relation (1) where ���� �� satis�es ������ �� �
���� ��.

���� �
��

����

���� ������ �� (1)

2.2. Periodic Clock Changes

An � Periodic Clock Change is de�ned by an � periodic function
���� from � to � such that the output ���� and input ���� are re-
lated together according to relation (2):

���� � ���� ����� with ��� ��� � � ��� (2)

Identi�cation of relations (1) and (2) yields the conclusion that an
� periodic PCC is a particular case of LPTV �lter with ���� �� �
	�� � �����.

2.3. Interleavers

An � periodic interleaver is de�ned by an interleaver function 
���
with the following relation (3) between the output ���� and the input
����.

���� � ��
���� with 
����� � 
��� �� (3)

With previous de�nitions, it is clear that an � periodic interleaver
is equivalent to an � periodic PCC. Functions � ��� and 
��� are
therefore related together according to: 
��� � �� � ���.
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2.4. Illustration: the matrix interleaver

We propose here to illustrate the previous results. We consider the
widely used ���� � matrix interleaver. Such an interleaver consists
in �lling a � � � matrix by the input signal ���� column by col-
umn. The output signal is obtained by reading the matrix row by row
according to �gure 1. It is possible to show that the associated PCC
function for this interleaver is given by (4) where � � ��� � ��
stands for the Euclidian division of � by � . An example of this PCC
function is proposed on �gure 1-b in the case ���� � � ��� ���.�

���� � ���� ��� ��� � �� � ���������

� ��� � �� and ������� � ���
(4)
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Fig. 1. (a)-Principle of the matrix interleaver (b)-PCC function

3. EFFECT OF A PCC ON THE AUTOCORRELATION

An LPTV �lter exhibits the property to turn a WSC process into a
WSS process [2]. Furthermore, a WSS process is characterized by a
bispectrum whose expression is given in [3]. As a particular LPTV
�lter, a PCC inherits the same property.

We are interested in deriving the PSD of the process at the out-
put of any PCC. Hence, we propose to derive the autocorrelation
function by stationarizing the PCC output process.

3.1. Review of WSS and WSC processes

For a WSS process ����, we de�ne its autocorrelation function [2]
����� � �������������	. Stationarity implies that this autocorre-
lation does not depend on the time index �. The PSD ���� � (where
� is the normalized frequency) is obtained by computing the Fourier
Transform of �����.

If we consider an ��WSC process [2] ����, we can de�ne its
autocorrelation function ������� � �����������	. � cyclosta-
tionarity implies an � periodicity in � and �, namely ���� �
�� � � �� � �������. For such an �-WSC process, the bis-
pectrum ����� �

�� (where � and � � are binormalized frequencies)
is obtained from ������� by the computation (5) of the two di-
mensional Fourier Transform [3].�

����
�� �� � �

�

�
�

���� 	�� � � � � �

�
�� ��� � ��

� ��� � �� �
����

���

�
�

��������� ����	�
��
������ (5)

3.2. Stationarization of a WSC process

Let consider an �-WSC process ���� with an autocorrelation func-
tion �������. It is possible to stationarize this process [2] and we
can show that the stationarized autocorrelation function ���

� ��� has
the following expression (6) according to the WSC autocorrelation.

���
� ��� �

�

�

����
���

����� �� �� (6)

Proof of this relation is straightforward. Evaluating the bispectrum
(5) for � � � � leads to the expression of the PSD ���� ��� of the
stationarized process. Computing the inverse Fourier Transform of
���� �� � yields the result.

3.3. Stationarization of the PCC output

Let consider an � periodic PCC with a PCC function ����. As a
particular case of LPTV �lter, this PCC turns a WSS process ����
with an autocorrelation function����� into an �-WSC process ����
with an autocorrelation �������.

Using previous results and de�nitions, we can show that the sta-
tionarized autocorrelation ���

� ��� of the output PCC is given by
the relation (7) where the function 
��� �� has the expression (8)
according to the PCC function ����. The output PSD ���� �� � of
the stationarized process can be obtained by computing the Fourier
Transform of ���

� ���.

���
� ��� �

�

�

����
���

���
��� ��� (7)


��� �� � �� � ���� � ��� �� (8)

It is worthy to notice that given � � �, the function 
��� �� (for � �
��� ���� � ��) represents the set of distances between the inverse
(by the PCC) of all elements that are �-distant after PCC processing.
Figure 2 illustrates the meaning of this important function 
��� ��.

x(r-f(r)) x( p+r-f(p+r))

distance=|p|

distance=| (r,p)|distance at the
PCC input

distance at the
PCC output

PCC processing
with function f

y(r) y(p+r)

Fig. 2. Illustration of the function 
��� ��

Finally, owing to this relation, given any PCC with function � ,
it is possible to determine the output stationarized autocorrelation
function (and also the PSD) if we know the input process. In ad-
dition, the previously stressed equivalence between PCC and inter-
leavers allows to apply this result to any interleaver.

4. APPLICATION TO THE USE OF AN INTERLEAVER IN
A SPREAD SPECTRUM FRAMEWORK

LPTV �lters exhibit the property to spread the spectrum when pro-
cessing an oversampled signal. This characteristic makes these �l-
ters an attractive tool to achieve a spread sprectrum system. Hence,
recent works [6], [7] propose such a system. More precisely, [6]
proposes to use a set of random interleavers as an LPTV spreading
tool. In such a case, it is shown that the random nature of inter-
leavers implies a perfectly �at PSD at the output of the interleaver.
However, in [7], we propose an orthogonal spread spectrum system
relying on the matrix interleaver that exhibits good performance in
terms of multiuser interference. However, the spreading ef�ciency
of such an interleaver has never been theoretically studied. More
generally, no work has ever been led to theoretically study the effect
of any interleaver on the input PSD. We aim here at showing how
the previously established relation (7) makes possible to tackle this
problem through the application to the matrix interleaver.
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4.1. Function 
��� �� for the matrix interleaver

We consider the (��� ) matrix interleaver previously presented on
�gure 1 whose period is denoted as � � ��. According to relation
(8), we need to express the value of 
��� �� for � � ��� ���� � ��
and � � � (value for � � � are useless because of the Hermi-
tian symmetry of the autocorrelation). After derivations detailed in
appendix A, we conclude that for a given value of �, the function

��� �� can only reach four different values. Given a value of �,
these four values can be summed up by the matrix representation of
�gure 3 where the values of � appear in an increasing way. Depend-
ing on the value of �, some of the four zones in the �gure 3 can be
reduced to an empty zone.
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4.2. Output autocorrelation function

We consider an input WSS process ���� with an autocorrelation
function �����. We make the assumption that there is an integer
� ful�lling: ������� � � for ��� � �. In addition, we suppose that
the parameter � of the interleaver is chosen greater than �, then we
show that the stationary output autocorrelation (7) has only �� � �
non null values given by:����
���

for � � ��� ����� , �����
� ��� � � ����� ���

�

�
�

for � � ��� ����� �� , �����
� ��� � �� � ���� � �� ���

�

for � � ��� ����� , �����
� �� � �� ��� � �����

�����
�

�
else �����

� � �

(9)

Now, given an input process ���� with an autocorrelation �����, we
propose to discuss the in�uence of the parameters � and �.

4.3. In�uence of the parameters � and �

In relation (9), given a value of � , it is straightforward that �����
� ���

tends to the function �� ��� given by (10) for increasing values of
�.

����
� ��� � �� ��� �

�
������ � if �

�
� �

� if �
�
	� �

(10)

Computing the Fourier Transform of (10), it is possible to show that
the output PSD ����� �� � tends to the function �� ��� de�ned by (11)
where ���� � stands for the input PSD and � stands for the normal-
ized frequency.

����� ��� � �� �� � � ����� � (11)

As a consequence, if we consider a matrix interleaver with suf�-
ciently large number of lines, the effect of a matrix interleaver on
the PSD of any WSS process is to replicate the compressed input

PSD ���� � at frequencies multiple of �
�

. Hence, we perfectly know
the spectral effect of the matrix interlaver. We will validate all these
results through simulations.

5. SIMULATIONS

We propose here to illustrate and verify the previous results on the
matrix interleaver through some simulations.

5.1. Function 
��� ��

We choose the matrix interleaver with parameters � �  and � � �
(namely � � �� � ��) and we propose to compute the values
of 
��� �� for � � ��� ������ for two different values � � � and
� � . Figure 4 illustrates the simulation results. These results meet
theoretical expectations of the matrix representation on �gure 3.
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Fig. 4. Function 
��� �� for � � � and � � 

5.2. Stationarized autocorrelation function

We propose to illustrate the previous results with an input NRZ pro-
cess. An NRZ with an oversampled factor � (i.e � samples/symbol)
is an ����� process whose stationarized autocorrelation function
����� and PSD ����� are given by (12).

�
����� � �� �	�



if � � ������� else ����� � �

and ���� � �
�



	
������
�
�������


� (12)

Figure 5 illustrates a realization of an NRZ process with an oversam-
pling factor � � � as well as the autocorrelation function.
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Fig. 5. A realization of an NRZ process and its autocorrelation

Such an NRZ process with oversampling factor � ful�lls the
previous assumptions of section 4.2. Therefore, the theoretical ex-
pressions (9) must be satis�ed. On �gure 6, we propose to compare
these theoretical expressions and the simulated autocorrelation for
��� ���� � ��� �� ���.
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Fig. 6. (a)- simulated (b)- theoretical autocorrelation function

According to this �gure 6, simulated results meet the theoretical
results.

5.3. PSD after matrix interleaving

According to (11) and (12), if an NRZ process with oversampling
factor � is processed by a matrix interleaver, the output PSD for
increasing values of � is given by (13).

����� �� � � �� ��� �
�

�

�
����
����

����
�� �

�
�

(13)

Figure 7 illustrates the PSD of the output process (obtained by
computing the Fourier Transform of (9) in case of an NRZ process)
for increasing values of � (namely � � �� �� and ��) as well as
the theoretical output PSD given by (13). The choice of the other
parameters is: � � � and � � �.
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Figure 7 con�rms that for a large value of �, the output PSD
is given by � replicas of the compressed input PSD at frequency
multiple of �

�
.

6. CONCLUSION

Recent works propose to use interleavers as a Spread Spectrum tool
in a multiuser framework. However, no work has ever proposed a
study of the frequency effect of an interleaver. In this paper, we have
addressed this issue. By stationarizing the WSC process at the out-
put of a PCC, we derived the general theoretical expression of the
stationarized autocorrelation function as well as the PSD. Thanks to
the previously stressed equivalence between PCC and interleavers,

this result can be applied to any interleaver. We have pointed out
how this result is useful through the example of the matrix inter-
leaver. Besides, this widely used interleaver turns out to compress
and replicate the input PSD for a large number of columns. Although
the results hold for any interleaver, the choice of this particular ex-
ample was motivated by the use of the matrix interleaver in a recent
multiuser system that exhibits good performance in terms of mul-
tiuser interference. Furthermore, works are under progress to show
that the obtained expressions are very useful to theoretically explain
the reasons of these good performance.

APPENDICES

Appendix A: Partial proof of relation (7)
The proof is quite long. Here we give some indications. It con-

sists in using an Euclidian decomposition. Actually, let consider an
integer �, and two integers � and �, there is an unique decomposi-
tion of the form (14) where � � ��:�

� � ������ � �������� � � ���

����� � �� , � ��� � �� , ������� � ���

(14)

Using the expression (4) for � , the de�nition (8) for 
��� ��,
as well as the decomposition (14) for � � � and �, it is possible to
deduce the following expression for 
��� ��:


��� �� � �������� ��� ��

�������������� ��� �������	 ���

Finally, given an integer �, using this expression for 
��� ��, we dis-
cuss the four cases for � (summed up by the 4 zones in the matrix
representation of �gure 3) and we get the four values of 
��� ��.

Appendix B: Partial proof of relation (9)
Given a value of � in (7), we know that there are only 4 possible

values for 
��� ��. Thus, we need to count the number of occurences
for these 4 values thanks to the matrix representation depicted on
�gure 3. Using the additional assumption ������� � � for ��� � �
and � � �, we get the result.
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