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Fig. 1. Σ∆ modulator in its block diagram form of error diffusion.

ABSTRACT

The quantization operation has been traditionally analyzed in sig-
nal processing and data conversion as a source of white noise al-
though it is of deterministic nature. This model has become par-
ticularly inaccurate in Σ∆ modulation where the quantization res-
olution can be as low as 1-bit. For an important class of Σ∆ mod-
ulators with constant inputs, we build rigorous foundations to the
quantization error analysis based on the spectral theory of unitary
operators.

1. INTRODUCTION

While amplitude quantization is omnipresent in signal processing,
no fundamental signal theory has been built for its genuine anal-
ysis as a deterministic operation. When the step size is small, the
quantization effect is often and legitimately considered negligible.
However, the techniques of data acquisition have evolved towards
the use of coarse quantization compensated by oversampling and
feedback. In this situation, the only general tool available to the
engineers has been the old model of quantization as an additive
source of white noise. This model is particularly inaccurate in Σ∆
modulation where resolutions of quantization as low as 1-bit are
used [1]. In Figure 1, we recall the principle of a Σ∆ modulator
[2], which is similar to the method of error diffusion. The funda-
mental dif£culty lies in the absence of mathematical tools to obtain
an explicit expression of the node signals of a feedback system that
is nonlinear due to quantization.

In past research, the instances where a rigorous signal analy-
sis was possible indeed turned out to be in a special case of Σ∆
modulators where a closed form expression of the node signals in
terms of the input could be derived. This was the case where the
loop £lter satis£es F (z) = H(z) − 1 with H(z) := (1 − z−1)m

and the quantizer is uniform and not overloaded1. This includes the

This work has been supported in part by the National Science Founda-
tion Grants DMS-0219072 and DMS-0219053.

1It is shown in [3] that non-overloading is guaranteed by making the
resolution of the quantizer at least m-bit.

standard single-loop [1] and multi-loop [3] con£gurations, but also
the standard multi-stage2 con£guration [4]. The rigorous spectral
analysis of the quantizer error e[k] was then possible by deriving
mathematically the Fourier transform Re(ω) of the autocorrelation
sequence

re[n] := lim
N→∞

1

N

N∑
k=0

e[k]e[k + n] (1)

de£ned in the time-average sense. In the stationary case of an
irrational constant input, it was found the peculiar property that the
spectrum of e[k] is purely discrete in the £rst order case m = 1,
while it becomes white (i.e., re[n] = σ2

eδ[n]) as soon as m ≥ 2.
This past research however did not have any development be-

cause the derivations were very speci£c to the considered case
of Σ∆ modulation, but also because the techniques of derivation
that remained at a straight level of algebraic manipulations did not
lead to some new general perspective. One particular dif£culty
for potential generalization was the heavy derivation of re[n] by
means of Fourier expansions to linearize the expressions of e[k]
and e[k + n] involved in (1) [1, 4, 3]. In the case of constant in-
puts, we show in this paper that all these past derivations happen
to only uncover particular results in an existing new framework of
spectral analysis that applies to a much larger class of Σ∆ mod-
ulators. More speci£cally, we consider here all Σ∆ modulators
such that the transfer function

H(z) := 1 + F (z) (2)

takes the form H(z) = B(z)
A(z)

with

A(z) = 1+a1z
−1+· · ·+amz−m and B(z) = (1−z−1)m (3)

and whose quantizer is uniform of any resolution that guarantees
the stability of the system and that can be in practice as low as
1-bit [5]. The Σ∆ modulators previously analyzed correspond to
the special case where A(z) = 1 and the quantizer is of m-bit
resolution and will be called the “ideal” modulators. This general-
ization has been possible thanks to the more recent observation of
a tiling phenomenon in these modulators [6] enabling some theo-
retical closed form expression of the node signals of the feedback
system. Thanks to this broader perspective, we £nd that, under
an irrational constant input, the autocorrelation sequence re[n] ap-
pears to result from a sequence of the type

〈
f,Unf

〉
L2(Tm)

, where

T := [0, 1),
〈·, ·〉

L2(Tm)
is the inner product of the Hilbert space

L2(Tm), U is a speci£c unitary operator of this space and f is
an element of L2(Tm) which depends on the constant input value

2In a multi-stage modulator, it can be shown that the error of the quan-
tizer of the last stage is equal to the quantizer error of a multi-bit multi-loop
modulator
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and the considered Σ∆ con£guration. From the spectral theory of
unitary operators, we show that the spectrum of the quantizer error
is in general the sum of a purely discrete component and an ab-
solutely continuous component. The particular case considered in
prior research (where A(z) = 1 and the quantizer is m-bit), is the
only case where only one of these two components is present in
the spectrum depending of the order, but also the only case where
the continuous component is ¤at (white noise component).

This research contains advanced mathematical material and
proofs which are developed in details in [7]. The scope of this
paper is to convey the new concepts of analysis introduced by this
mathematical research to the signal processing engineering com-
munity. We will refer to [7] for detailed proofs.

2. BACKGROUND KNOWLEDGE ON Σ∆

2.1. Basics on Σ∆ modulation

As part of basic knowledge on Σ∆ modulation and following the
notation of Figure 1, it is easy to show that the global error of
the Σ∆ modulator eΣ∆[k] := q[k] − x[k] and the quantizer error
e[k] := q[k] − y[k] by the linear relation

eΣ∆[k] = h[k] ∗ e[k]

where h[k] is the sequence whose z-transform is de£ned in (2).
In the most typical applications, x[k] is a lowpass signal result-
ing from oversampling a bandlimited signal, and the goal is to
design H(z) as a highpass £lter so that the input-bandwidth por-
tion of the error eΣ∆[k] is minimized. The case H(z) = (1 −
z−1)m/A(z) considered in this paper is important from a theoret-
ical point of view as the m zeros of H(ω) at ω = 0 allow an mth
order asymptotic decay of the input-bandwidth error power with
increased oversampling, which constitutes the most basic princi-
ple of Σ∆ modulation.

In this paper, we assume that signals are normalized in ampli-
tude so that the step size of the quantizer is 1 and, as it is common
usage in Σ∆ modulation, we assume that the quantizer is of “mid-
riser” type, i.e., its output levels belong to Z + 1

2
.

As it is common practice in Σ∆ modulation we will assume
quantizer

2.2. Dynamical system approach

A particularly ef£cient description of the Σ∆ system from a dy-
namical point of view was derived in [8, 6] and consists of intro-
ducing the new signal u[k] whose z-transform is

U(z) :=
E(z)

A(z)
=

EΣ∆(z)

B(z)
. (4)

Any knowledge on the sequence u[k] implies knowledge on the
error sequences since e[k] = a[k]∗u[k] and eΣ∆[k] = b[k]∗u[k].
As one important application, we have

re[n] = (a[n] ∗ a[−n]) ∗ ru[n]

where ru[n] is the autocorrelation of u[k], de£ned by

ru[n] := lim
N→∞

1

N

N∑
k=0

u[k]u[k + n]. (5)

Equation (4) implies that U(z) = (Q(z) − X(z))/((1 − z−1)m

which means that u[k] is the mth order summation of the q[k] −
x[k]. By calling in general ui[k] the ith order summation of the

q[k]− x[k], it was shown in [7, 6] that the m-dimensional column
vector

u[k] :=
[
u1[k] u2[k] · · · um[k]

]�
,

satis£es the recursive relation

u[k] = Mx[k](u[k − 1]) (6)

where for any given real value x, Mx is the mapping of R
m de£ned

by
Mx(u) := L u + i

(
Q(x − f� u) − x

)
, (7)

Q(·) is the scalar quantizer function,

L :=

⎡
⎢⎢⎢⎣

1 0 · · · 0
1 1 · · · 0

.

.

.
.
.
.

. . .
.
.
.

1 1 · · · 1

⎤
⎥⎥⎥⎦, i :=

⎡
⎢⎢⎢⎣

1
1

.

.

.
1

⎤
⎥⎥⎥⎦, f :=

⎡
⎢⎢⎢⎣

f1
f2

.

.

.
fm

⎤
⎥⎥⎥⎦, (8)

and fj := 1 +
∑n

i=n−j+1(−1)n−j
(

i−1
n−j

)
ai. Solving the recur-

sive relation (6) is the key to evaluating ru[n] in (5) since at every
instant

u[k] = p(u[k]) (9)
where p(u) is by de£nition the projection of u onto its last com-
ponent.

2.3. Constant input case and error autocorrelation

We now explicitly restrict ourselves to the case of an input x[k]
that is equal to a constant x. In this situation, the sequence u[k] is
recursively obtained by

u[k] = M(u[k − 1]) (10)

where M := Mx is a £xed mapping independent of k. Since
u[k+n] = Mn(u[k]) and using (9), one easily £nds from (5) that

ru[n] = lim
N→∞

1

N

N∑
k=0

fn(u[k]) (11)

where
fn(u) := p(u) · p(Mn(u)). (12)

The two obstacles here are that the nth iterate of the nonlinear
mapping M is dif£cult to derive and the evaluation of the discrete
sum.

2.4. Outstanding tiling property

When stability is effective, it was observed in [8, 6] the outstanding
property that M has an attracting invariant set Γ that is a Z

m-tile.
Mathematically, this means that there exists a set Γ ⊂ R

m such
that

(i) M(Γ) = Γ,
(ii) for any sequence u[k] that satis£es (10), there exists n ∈ Z

such that u[k] ∈ Γ for all k ≥ n,
(iii) {Γ + k}k∈Zm forms a partition of R

m.

This property has been partly demonstrated by experiment [6] and
partly proved mathematically [7]. We give a graphical illustration
of the tile Γ in the case m = 2 in Figure 2(a,c). Qualitatively, the
tiling property is mainly due to the fact that Mx from (7) is of the
form

Mx(u) = L u − i x̄ + Kx(u) (13)
where L is a matrix of integer coef£cients and determinant equal
to ±1, x̄ := x + 1

2
, and Kx is a mapping from R

m to Z
m, which

depends on x. As an example, in the single-bit case where Q(y) =
1
2
sign(y), Kx(u) = i for all u such that x−f�u ≥ 0 and Kx(u)

is equal to the zero vector otherwise.
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Fig. 2. (a,c) Set Γ outlined in black for two 2nd order modulators
with constant input x = 1

7
, experimental sequence u[k] in black

dots (illustrating property (ii)) and representation of Γ+(1, 0) and
Γ+(1, 1) in gray (illustrating property (iii)) : (a) ideal modulator;
(c) A(z) = 1 − 0.5z−1 and 1-bit quantizer; (b,d) functions pΓ

corresponding to the cases (a) and (c), respectively.

3. NEW AUTOCORRELATION DERIVATION

3.1. Modulo projections

As explained in [6], given the property that Γ is a tile, there exists
a unique function 〈·〉Γ of R

m that is 1-periodic in each dimension
(i.e., 〈u + k〉Γ = 〈u〉Γ for all u ∈ R

m and k ∈ Z
m) and that is

invariant in Γ (i.e., 〈u〉Γ = u for all u ∈ Γ). Let us de£ne the new
mappings

L(u) := L u − i x̄ (14)

E(u) := 〈L(u)〉
Tm (15)

where i x̄ results from the expression (13) and T
m = [0, 1)m is a

trivial tile. We have the following property:

Proposition 3.1

M ◦ 〈·〉Γ = 〈·〉Γ ◦ E. (16)

Proof: Using the facts that 〈v〉T − v always belongs to Z
m

for any tile T and any v ∈ R
m, and that L is only composed of

integer coef£cients, one can successively verify that M(〈u〉Γ) −
M(u), M(u)−L(u) and L(u)−E(u) belong to Z

m. This implies
that M(〈u〉Γ) − E(u) ∈ Z

m. Now, because M(〈u〉Γ) ∈ Γ (since
〈u〉Γ ∈ Γ and Γ is invariant by M), this automatically implies that
M(〈u〉Γ) = 〈E(u)〉Γ.

As a consequence, we have

M
n ◦ 〈·〉Γ = 〈·〉Γ ◦ E

n (17)

for any positive integer n. Then,

fn(〈u〉Γ) = p(〈u〉Γ) · p(Mn(〈u〉Γ))

= pΓ(u) · pΓ(En(u)) (18)

where
pΓ := p ◦ 〈·〉Γ. (19)

Figure 2 shows graphically two examples of function pΓ in the
case m = 2. Note in (18) that contrary to (12), it is the nth iterate
of a linear function E that is needed and which can be derived ex-
plicitly. Indeed, En(u) = 〈Ln(u)〉

Tm and Ln(u) is obtained by
pure linear algebra. Meanwhile, (18) introduced the new function
pΓ which requires some speci£c derivations.

3.2. Ergodicity

When x is an irrational number, E is known to be ergodic [9]. This
results in the following property.

Proposition 3.2 Let x be an irrational number and Γ be a Lebesgue
measurable tile (up to a set of measure zero) that is invariant under
M. Then for any function f ∈ L1(Γ),

lim
N→∞

1

N

N∑
n=1

f(u[n]) =

∫
Γ

f(v) dv =

∫
Tm

f(〈v〉Γ) dv (20)

for almost every initial condition u[0] ∈ Γ.

As it is standard in the spectral theory of dynamical systems (see,
e.g., [9]), let U := UE be the operator on L2(Tm) de£ned by

Ug = g ◦ E. (21)

By combining (11), (20), (18) and (21), we £nd

ru[n] =

∫
Tm

pΓ(u) · UnpΓ(u)du (22)

= 〈pΓ,UnpΓ〉 (23)

where 〈·, ·〉 denotes the inner product of the Hilbert space L2(Tm).

4. USE OF SPECTRAL THEORY

The expression (23) shows that properties of the autocorrelation
ru[n] will result from the general analysis of the sequence

sf [n] := 〈f,Unf〉 (24)

where f ∈ L2(Tm). The operator U is easily shown to be unitary
(i.e. 〈Uf,Ug〉 = 〈f, g〉) from the fact that E is a mapping of
T

m that preserves measure. Thus, a complete set of knowledge
suddenly becomes available thanks to the standard spectral theory
of unitary operators [9]. We summarize here the key points useful
to our particular problem.

Any function f ∈ L2(Tm) has a unique decomposition

f = f̄ + f̆ , (25)

where f̄ is the orthogonal projection of f onto the subspace H

spanned by the eigenfunctions of U and f̆ ∈ H⊥. Because U is
unitary, H and H⊥ are both invariant by U . As a result, one easily
derives that

sf [n] = sf̄ [n] + sf̆ [n]. (26)
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It is known from spectral theory [9] that the Fourier transform of
sf̄ [n] is a purely discrete measure and the Fourier transform of
sf̆ [n] is a continuous measure.

From the particular form of the matrix L of (8), the space H
is proved in [7] to be

H = {f ∈ L2(Tm) : f(v) only depends on v1}
where v1 is by convention the £rst component of v. As a result,
the orthogonal projection of f onto H is given by

f̄(v) =

∫
Tm−1

f(v1,v
′) dv′. (27)

Remark 4.1 In the particular case where m = 1, H = L2(T).
Hence f = f̄ and f̆ is the zero function.

By abuse of notation, we will write f̄(v) = f̄(v1), thus looking at
f̄ as a function of one variable. We have

sf̄ [n] =

∫
T

f̄(v1)f̄(v1 + nx̄) dv1 = af̄ (nx̄), (28)

where for any 1-periodic function g, ag(τ) :=
∫

T
g(v)g(v + τ)dv

is the autocorrelation of g. If we denote the Fourier coef£cients

of f̄ by ̂̄f [k], then it results from standard Fourier derivations that

sf̄ [n] =
∑

k

∣∣̂̄f [k]
∣∣2e2πj(kx̄)n. This leads to the following propo-

sition.

Proposition 4.2 The spectral component Sf̄ (ω) is purely discrete

and composed of Dirac peaks of coef£cients
∣∣̂̄f [k]

∣∣2 and located
at frequencies 2πkx̄ for all k �= 0.

The computation of sf̆ [n] is not easy. However, some fundamental
properties on this sequence can still be derived. It is proved in
[7] that Sf̆ (ω) is non-negative and in L1. By Riemann-Lebesgue
lemma, a fundamental consequence of this property is

lim
n→∞

sf̆ [n] = 0. (29)

The exact rate at which sf̆ [n] goes to zero depends on the func-

tion f̆ . Except in special circumstances sf̆ [n] is not reduced to an
impulse and thus the spectral component Sf̆ (ω) is not white.

5. CONSEQUENCE ON Σ∆ MODULATION

The autocorrelation ru[n] as expressed in (23) is equal to spΓ [n]
where sf [n] and pΓ are de£ned in (24) and (19), respectively. By
applying (26), we have

ru[n] = spΓ [n] = sp̄Γ [n] + sp̆Γ [n]. (30)

5.1. Ideal modulators

In ideal modulators, the quantizer is not overloaded, implying that
e[k] remains in the interval [− 1

2
, 1

2
). Moreover, A(z) = 1, im-

plying that u[k] = e[k] due to (4). Since um[k] = u[k], it is
concluded that p(Γ) ⊂ [− 1

2
, 1

2
). As a result, one can easily prove

that
pΓ(v) = 〈p(v)〉0 (31)

where we have used here the short notation 〈·〉0 := 〈·〉[− 1
2 , 1

2 ).
This particular function is shown graphically in Figure 2(b) in the
case m = 2. In the £rst order case m = 1, because of Remark
4.1, we simply have ru[n] = sp̄Γ [n]. This immediately implies
that u[k] has a purely discrete power spectrum due to Proposi-
tion 4.2. This power spectrum is explicitly obtained as follows.

Since p(u) = u, p̄Γ(u) = pΓ(u) = 〈u〉[− 1
2 , 1

2 ). The Fourier
coef£cients of this 1-periodic function can be easily derived to be
ˆ̄pΓ[k] = j (−1)k

2πk
for k �= 0 with ˆ̄pΓ[0] = 0. With Proposition 4.2,

we conclude that the spectrum of u[n] is solely composed of Dirac
peaks of amplitude 1

(2πk)2
located at frequencies kx̄ for k �= 0.

This was indeed the result obtained in [1].
Consider now the cases m ≥ 2. By combining (27) and (31),

we £nd that p̄Γ(v) =
∫

T
〈v〉0dv = 0. We then obtain ru[n] =

sp̆Γ [n], thus implying that the spectrum of u[n] is continuous.
Now, with the speci£c function of (31), one actually £nds that
ru[n] = 1

12
δ[n] [7] by direct evaluation of the integral (22). Note

that sp̆Γ [n] = 1
12

δ[n] is a very particular case of (29).

5.2. General modulators

In the general case, the function pΓ does not have the simple form
of (31). Figure 2(d) gives an illustration of function pΓ in a more
generic situation. So in general, p̄Γ is not the zero function and
sp̆Γ [n] is not reduced to an impulse. When m ≥ 2, this implies
that the power spectrum of u[n] is a mixture of Dirac components
at frequencies kx̄ and of a continuous part that is not white. This
implies that the spectral analysis previously performed in [1, 3,
4] is actually not representative of the general case and is mainly
showing some limit effect.

Further derivations of ru[n] requires that the set Γ be known.
This set is derived in [8] for three particular 2nd order con£gura-
tions. The full parametrization of Γ has been recently achieved
by dynamical system analysis on 2nd order modulators within a
certain input amplitude range [10].
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