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ABSTRACT

In this work, we deal with multilinear representations of an harmonic
process composed by a mixture of complex sinusoids contaminated
by a colored Gaussian noise of unknown probability density func-
tion. High-Order Statistics, and in particular Fourth-Order Cumu-
lants (FOC), are popular tools to mitigate the effect of the colored
noise and can be viewed as a natural enhancement of the noisy mix-
ture. As the FOC of an harmonic process is a multilinear function, it
seems natural to map this quantity onto a structured multi-way array
(aka. tensor). However, an harmonic process can be understood as
a pure stationary random process or as a deterministic process cor-
rupted by a stationary noise. In this paper, we explore the relation
existing between these two models in the context of the multilinear
decomposition theory.

1. INTRODUCTION

Harmonic Retrieval is a very common problem in signal processing,
telecommunication (radar, sonar), geophysics, biomedical analysis
and power system monitoring. In numerous applications, it is suf-
ficient to assume that the noise is (Gaussian or not) white and thus
to employ data-based or second-order statistic for identification of
the model. But, it is well-known that if the noise is colored with un-
known probability density function (pdf), these approaches are not
well adapted. On the other hand, High-Order Statistics (HOS) are
a useful tool to combat colored Gaussian noises of unknown pdf.
Indeed, the key point of HOS theory is that all Gaussian-noise cu-
mulants of order greater than two are equal to zero [9]. However,
researches have essentially focused on model parameter identifica-
tion for stationary process where multiple realizations are available.
More precisely in this case, we have to impose a phase randomiza-
tion for each harmonic. Consequently, a sum of M harmonics can be
seen as a stationary random process for which multiple realizations
are available and the Fourth-Order Cumulants (FOC) is well defined
by considering ensemble averaging. We call this situation the ran-
dom formulation of the harmonic process. Another direction has
been considered in [2] by defining the notion of ”mixed” cumulants.
The idea behind this term is to consider the harmonic process as a
deterministic signal (single realization) and thus to relax the phase
randomization assumption. In this case, the non-stationary mixture
is the sum of a deterministic process, the model, and a stationary
random process, the noise. In this situation, the authors propose a
consistent FOC Estimator (FOCE) based on the mixed FOC. We call
this situation the deterministic formulation of the harmonic process.
The first proposal for multi-way array generalizations of factor and
principal component analysis date back to the 1960s [1] and early
1970s [5]. The model proposed by Tucker [1] generalized the prin-

cipal component and factor analysis model in that it used one com-
ponent matrix for all three ”ways” of a three-way data array. These
component matrices are related to each other by a so-called core
tensor. The model proposed independently by Carroll and Chang
and Harshman [5], called the ”CANDECOMP” and ”PARAFAC”
model respectively, also uses component matrices for all three ways,
but in their model each component is related to only one compo-
nent of each of the other two ways. This model is usually called
CP for CANDECOMP/PARAFAC. In certain situations, however,
this model is too restrictive since it forces to have a super-diagonal
core tensor. In such situations, the model proposed by Tucker of-
fers a useful alternative. The above two models can be considered as
the fundamental models underlying most currently used multi-way
techniques. On the other hand, considering HOS lead to naturally
define a mapping between multilinear function onto a multi-way ar-
ray [3, 4, 7]. Application of multilinear representation to the har-
monic process in additive noise has been first addressed by Liu and
Sidiropoulos in [8]. More recently, a decomposition of data multi-
way arrays associated to Shift-Invariant techniques have been ex-
ploited [10].
In this work, we revisit the link between the deterministic and the
random formulations of the mixture of M harmonic processes in the
context of the multilinear algebra of HOS-based multi-way arrays.
More precisely, we show that in the random formulation, the ten-
sor based on the FOC can be diagonalized as the core tensor of the
Tucker model is super-diagonal. In other words, we can express this
tensor as a CP model, ie., as a linear combination of M rank-1 ten-
sors (outer product of three Vandermonde vectors). The second part
of this work deals with the decomposition of the tensor based on the
consistent FOCE in the context of the deterministic formulation of
the harmonic process. Then, for finite analysis duration, we show
that the tensor based on the FOCE follows a Tucker model of order
M3 so we need to consider much more (M3 in fact) rank-1 tensors
to perfectly reconstruct this tensor and its diagonalization is impos-
sible. However, we show that for asymptotic analysis duration the
FOCE-based Tucker model tends to the FOC-based CP model of or-
der M and thus the random and the deterministic formulations of an
harmonic process become equivalent.

2. TWO TYPES OF HARMONIC PROCESSES

We consider the complex harmonic model defined according to:

xn =
M�

m=1

αmz
n
m, for n ∈ [0 : N − 1] (1)
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where N is the analysis duration and M is the known number of
harmonics, zm = eiωm is called the m-th pole of xn where i =√
−1 and ωm is the m-th angular-frequency belonging to (0, π]. In

the sequel, we assume that all the angular-frequencies are distinct. In
addition, αm = ameiφm is the non-null m-th complex amplitude,
ie., am �= 0, ∀m. We add a stationary complex colored Gaussian
noise en in equation (1) and we obtain:

yn = xn + en where en = hn ∗ wn (2)

with wn a Gaussian white noise and hn is a summable, linear, and
time-invariant filter, ie.

�
∀n

|hn| < ∞. In addition, we assume that
all the moments of the noise exist and are finite. Depending on the
following assumptions, model (2) is:

• A pure stationary random harmonic process if φm’s are iid ran-
dom variable in [−π, π). In this situation, pure means that both
xn and en are stationary random process. In this case, we as-
sume that xn and en are two zero-mean statistically indepen-
dent process.

• A non-stationary Mixed Random harmonic process if φm’s are
deterministic in [−π, π). Here, we use the same terminology
as in [2], ie., mixed process means that xn is deterministic and
en is a stationary random process.

3. FOURTH-ORDER CUMULANTS (FOC) OF A PURE
STATIONARY RANDOM HARMONIC PROCESS

3.1. FOC tensor definition

It is well-known that HOS is an efficient way to combat colored
Gaussian noise. As the pdf of a pure stationary random harmonic
process is symmetric then its Third-Order Cumulant is identically
zero (in absence of phase coupling [2]). So, we define the Fourth-
Order Cumulant according to:

Definition 1 ([9]) Assume that {yn, n ∈ [0 : N − 1]} is a random
stationary zero-mean process defined in (2) which admits finite mo-
ments up to the fourth order, the Fourth-Order Cumulant (FOC) is
defined according to:

[Y4]τ1τ2τ3 = cum[yny
∗
n+τ1

yn+τ2y
∗
n+τ3

] (3)

= E[yny
∗
n+τ1

yn+τ2y
∗
n+τ3

]

− E[yny
∗
n+τ1

]E[yn+τ2y
∗
n+τ3

]

− E[ynyn+τ2 ]E[y∗
n+τ1

y
∗
n+τ3

]

− E[yny
∗
n+τ3

]E[y∗
n+τ1

yn+τ2 ]

where E[.] is the mathematical expectation, τ1 ∈ [0 : T1 − 1],
τ2 ∈ [0 : T2 − 1], τ3 ∈ [0 : T3 − 1] and T1 + T2 + T3 = N + 2.

Moreover, as the noise and the signal are statistically independent,
the FOC tensor of the mixture is given by Y4 = X4 + N . In other
words, the T1 × T2 × T3 FOC tensor, Y4, associated to the mixture
is simply the sum of the FOC tensor, X4, associated to a noise-free
harmonic process and the FOC tensor, N , associated to the noise.

3.2. FOC tensor of an harmonic process

Taking into account the phase randomization assumption in model
(1) and some basic properties of cumulants [9], the FOC of a pure
stationary random harmonic process is given by:

[X4]τ1τ2τ3 = −
M�

m=1

a
4
mz

(τ1+τ3)∗
m z

τ2
m . (4)

Expression (4) shows that [X4]τ1τ2τ3 is a sum of 3-way scaled
harmonics with null phases [8]. The important point is that expres-
sion (4) shares the same poles as model (1) and thus allows the iden-
tification of model (1).

3.3. Enhancement of the FOC mixture

The FOC of the noise is given by N = γH where H is the T1 ×
T2 × T3 real tensor associated to filter hn defined by [H]τ1τ2τ3 =�N−1

n=0 hnh∗
n+τ1

hn+τ2h∗
n+τ3

and γ is the Kurtosis ”excess” of the
driving noise wn. In case of (colored or not) Gaussian noise, we
have a null Kurtosis (γ = 0) and hence Y4 = X4.

3.4. FOC tensor decomposition

Theorem 1 The FOC tensor associated to a pure stationary random
harmonic process follows a 3-way CP model of order M according
to:

Y4 = −
M�

m=1

a
4
m

�
p
(1)
m

∗ ◦ p
(2)
m ◦ p

(3)
m

∗
�

(5)

where ◦ denotes the outer product and p
(s)
m =

�
1 zm . . . zTs−1

m

�T

is a Vandermonde vector of length Ts.

Corollary 1 Y4 associated to a pure stationary random harmonic
process is diagonalizeable according to:

Y4 = T ×1 Z
(1)∗ ×2 Z

(2) ×3 Z
(3)∗ (6)

where ×s is the Tucker’s product and we have defined the Ts × M

Vandermonde matrix according to:

Z
(s) =

�
p
(s)
1 p

(s)
2 . . . p

(s)
M

�
(7)

and:

[T ]jk� =

�
−a4

j if j = k = �

0 otherwise
(8)

is an hypercubic M × M × M super-diagonal core tensor.

Remark that we assume that {Z(s)} are rank-M non-deficient
matrices, ie., we have to simultaneously verified for s ∈ [1 :
3], M ≤ Ts and thus M ≤ min(T1, T2, T3). In this case, the
CP model is unique up to permutation and scaling of columns [8] if
and only if M ≥ 2.

4. FOURTH-ORDER CUMULANTS ESTIMATOR (FOCE)
OF A MIXED PROCESS

In practice when the randomization of the phase is often nonsen-
sical, tensor Y4 is not ”computable” because we have only access
to a single realization (of finite length) of the harmonic process de-
fined in (1), ie., for a deterministic value of the phase. As the FOC
of a mixed process is non-stationary, we need to an alternative def-
inition. Let yn be a mixed process in the sense that xn is a zero-
mean deterministic component and en is a random component given
by equation (2). In this case, we define a new cumulant function,
noted ¯cum[.], adapted to this mixed situation according to equation
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(3) where we replace the true moment by the following mixed mo-
ment [2] Ē[.] = limN→∞

1
N

�N−1
n=0 E[.]. Under mild conditions,

the mixed process yn defined in (2) verifies the following property:

lim
N→∞

Ŷ(N)
4

def
= Ŷ(∞)

4

w.p.1
= Ȳ(∞)

4 = X̄ (∞)
4 + γH. (9)

where w.p.1 means converge with probability one and symbol¯(re-
spectivelyˆ) means that we consider mixed (respectively samples)
cumulants. This result is well-known for pure stationary random
harmonic process and is also valid for mixed processes according to
reference [2].

As xn is the deterministic part of the mixed process yn, we have
X̄ (∞)

4 = X̂ (∞)
4 . In addition, as we assume that the noise is Gaussian

(colored or not), we have γ = 0 and expression (9) becomes Ȳ(∞)
4 =

X̂ (∞)
4 .

4.1. Tucker model of a finite and deterministic harmonic pro-
cess

According to the FOCE tensor definition, we can formulate the fol-
lowing theorem:

Theorem 2 Tensor X̂ (N)
4 computed from a N -sample harmonic

process (with finite N ) follows a rank-(M, M, M) Tucker model.

Proof: The FOCE tensor associated to model (1) admits the follow-
ing expression:

�
X̂ (N)

4

�
τ1τ2τ3

=

M�
j,k,�=1

ρ
(N)
jk� z

∗
j

τ1z
τ2
k z

∗
�

τ3 (10)

where:

ρ
(N)
jk� = δ

(N)
jk� −

3�
s=1

δ
(s,N)
jk� (11)

and:

δ
(N)
jk� =

α∗
j αkα∗

�

N

M�
m=1

αmgN (zmz
∗
j zkz

∗
� ), (12)

δ
(1,N)
jk� =

α∗
j αkα∗

�gN (zkz∗
� )

N2

M�
m=1

αmgN (zmz
∗
j ), (13)

δ
(2,N)
jk� =

α∗
j αkα∗

�gN (z∗
j z∗

� )

N2

M�
m=1

αmgN (zmzk), (14)

δ
(3,N)
jk� =

α∗
j αkα∗

�gN (z∗
j zk)

N2

M�
m=1

αmgN (zmz
∗
� ). (15)

with gN (zz′) = N if z′ = z∗ and 1−zN z′N

1−zz′ otherwise. As am �=
0 and the angular-frequencies are all distinct, ρ

(N)
jk� is a non-zero

complex scaling factor. By using the outer product, it comes:

X̂ (N)
4 =

M�
j,k,�=1

ρ
(N)
jk�

�
p
(1)
j

∗ ◦ p
(2)
k ◦ p

(3)
�

∗
�

. (16)

Expression (16) highlights that tensor X̂ (N)
4 is a linear combina-

tion of M3 rank-1 structured tensors p
(1)
j

∗ ◦ p
(2)
k ◦ p

(3)
�

∗
. This is

precisely the definition of a rank-(M, M, M) Tucker model.

Corollary 2 For finite duration (fixed N ), tensor X̂ (N)
4 is non-

diagonalizeable.

Proof: By using the Vandermonde matrices {Z(s)} defined in ex-
pression (7), expression (16) becomes:

X̂ (N)
4 = R(N) ×1 Z

(1)∗ ×2 Z
(2) ×3 Z

(3)∗ (17)

where:
�
R(N)

�
jk�

= ρ
(N)
jk� (18)

defines the core tensor. Note that X̂ (N)
4 is no longer diagonalizeable

since the core tensor R(N) is not super-diagonal (cf. expression
(11)).

4.2. Asymptotic result

An interesting property lies in the relation between the CP model of
expression (6) and the Tucker model of expression (17) in the context
of infinite analysis duration where relation Ȳ(∞)

4 = X̂ (∞)
4 is valid.

More precisely, we formulate the following result:

Theorem 3 For infinite analysis duration (N → ∞), the Tucker
model of order M3 given in expression (17) reduces to a CP model
of order M .

Proof: By considering the super-diagonal terms in expressions
(12), (13) and (15), it comes:

δ
(N)
jjj = δ

(1,N)
jjj = δ

(3,N)
jjj = a

4
j +

a2
jα

∗
j

N

M�
m=1,m�=j

αmgN (zmz
∗
j ), (19)

δ
(N)
jj� = δ

(3,N)
jj� = a

2
ja

2
� +

a2
jα

∗
�

N

M�
m=1,m�=�

αmgN (zmz
∗
� ), (20)

δ
(N)
j�� = δ

(1,N)
j�� = a

2
ja

2
� +

a2
�α

∗
j

N

M�
m=1,m�=j

αmgN (zmz
∗
j ). (21)

Other terms for j �= k �= � in expressions (12)-(15) are dominated
by N−1 or N−2 and go to zero when N increases. In particular, we
have δ

(2,∞)
jk� = 0. Now, we can determine the asymptotic behavior

of ρ
(N)
jk� . We obtain:

ρ
(∞)
jk� =

��
�

a4
j − a4

j − a4
j = −a4

j for j = k = �,

a2
ja

2
� − a2

ja
2
� = 0 for j = k or �,

0 otherwise.
(22)

The first (respectively the second) line in result (22) can be ob-
tained by replacing expression (19) (respectively (20) and (21)) in
(11). Equivalently, we have:

R(∞) = T (23)

where tensor T has been defined in expression (8). Expression (23)
is equivalent to Ŷ(∞)

4 = Y4.
It is convenient to be able to represent a tensor as a collection

of matrices. Typically, all the columns along a certain mode are
rearranged to form a matrix. For instance, we give for P = 3, the
asymptotic first mode definition of the core tensor:
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U1(R(∞)) =
�
[R(∞)]: : 0 . . . [R(∞)]: : T3−1

�
M×M2 (24)

where [R(∞)]: : a denotes the a-th vertical slice of tensor R(∞).
To illustrate theorem 3, we give for M = 3, the asymptotic first

mode of the following tensors [D(∞)]jkl = δ
(∞)
jkl , [D(∞)

s ]jkl =

δ
(s,∞)
jkl :

U1(D
(∞)

) =�
�

a
4
1 0 0 a

2
1a

2
2 a

2
1a

2
2 0 a

2
1a

2
3 0 a

2
1a

2
3

a
2
1a

2
2 a

2
1a

2
2 0 0 a

4
2 0 0 a

2
2a

2
3 a

2
2a

2
3

a
2
1a

2
3 0 a

2
1a

2
3 0 a

2
2a

2
3 a

2
2a

2
3 0 0 a

4
3

�
� ,

U1(D(∞)
1 ) =

�
�

a4
1 0 0 0 a2

1a
2
2 0 0 0 a2

1a
2
3

a2
1a

2
2 0 0 0 a4

2 0 0 0 a2
2a

2
3

a2
1a

2
3 0 0 0 a2

2a
2
3 0 0 0 a4

3

�
� ,

U1(D(∞)
2 ) = 0,

U1(D(∞)
3 ) =�

�
a4
1 0 0 a2

1a
2
2 0 0 a2

1a
2
3 0 0

0 a2
1a

2
2 0 0 a4

2 0 0 a2
2a

2
3 0

0 0 a2
1a

2
3 0 0 a2

2a
2
3 0 0 a4

3

�
� .

According to above expressions, observe that:

U1(R(∞)) = U1(D(∞)) −
3�

s=1

U1(D(∞)
s )

=

�
�

−a4
1 0 0 0 0 0 0 0 0

0 0 0 0 −a4
2 0 0 0 0

0 0 0 0 0 0 0 0 −a4
3

�
�

= U1(T )

which is equivalent to result (23). In figure 1, we have reported three
typical patterns of convergence for one, two and three harmonics.
Note that the convergence is very fast for one component but can be
pretty slow for more than one component and for N > 200 samples.
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Fig. 1. Typical error values: ||R(N) − T ||2 for one, two and three
harmonics Vs. the analysis duration.

Corollary 3 Theorem 3 indicates that asymptotically, the determin-
istic and random formulations of the harmonic process are equiva-
lent.

5. CONCLUSION

In the Harmonic Retrieval problem context, we show that the Fourth-
Order Cumulant (FOC) tensor computed from an harmonic process
with uniform phase randomization assumption, follows a 3-way CP
model of order M . We call this first situation, the random formu-
lation of the harmonic process. If we relax this assumption, the
mixture becomes the sum of a deterministic harmonic process and
a stationary random Gaussian noise. In this situation, we have to use
an alternative definition of the cumulants which is adapted to our
new model. This new statistic quantity is called mixed FOC and we
show that for finite analysis duration, the consistent FOC Estimator
(FOCE) fits a 3-way Tucker model of order M3. The latter situa-
tion, called here deterministic formulation, is very important since
the phase randomization assumption is nonsensical in many real ap-
plications. However, asymptotically the Tucker model tends to the
CP model of lower order and thus the random and the deterministic
formulations of the HOS-based harmonic process become equiva-
lent.
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