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ABSTRACT

We present a technique for spectral analysis in the context of

multi-rate sampling by a collection of sensors. Correlation

of the time-domain samples gives rise to moment constraints

for the power spectrum. A homotopy-based technique is then

used to identify consistent power spectra. The spectra we ob-

tain are at a minimum distance in the Kullback-Leibler sense

to a given “prior” and the “maximum entropy” power spec-

trum corresponds to the special case where the prior is white.

I. INTRODUCTION

There are numerous engineering applications that require es-

timation of the power spectrum of a stochastic process from a

finite observation record. For instance, in communications,

radar, sonar, and geophysical seismology, spectral analysis

of a recorded signal/echo is essential for data compression,

speaker recognition, target identification, or the identification

of underlying geological morphology. To this end, spectral

estimation and analysis techniques played a central role in

signal processing research over the past several decades.

In this paper, we consider a problem which is typical when

several independent measurements of a stochastic process are

taken, possibly from different sensors, for the purpose of spec-

tral analysis. This is quite typical in sensor networks, nonuni-

form phased-array antenna, and remote sensing. In fact, the

setting we will consider is typified by non-uniform sampling

of an underlying stochastic process. The low resolution sam-

ples from a variety of sensors are to be integrated and utilized

for identifying the power spectrum of the process. In partic-

ular, we focus on the problem as put forth in Jahromi, Fran-

cis, and Kwong [1], and we adapt a mathematical framework

in [2] for its solution.

II. MULTIRATE OBSERVATIONS

Consider the setup shown in Fig. 1 which represents a mul-
tirate sensing system having as outputs low-rate observations
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or measurements vi(n) of the signal of interest x(n). The lin-

ear filters in Fig. 1 model bandwidth limitations of the sens-

ing apparatus. These filters are followed by down-sampler

units to model differing sampling rates and communication

strength between the various sensors and a fusion center in

the sensor network.

Fig. 1. M-channel multirate observer

If x(n) is wide-sense stationary (WSS) then so are the

observed processes v0(n) to vM−1(n). Their second-order

statistics are related to the second-order statistics of x(n) via

Rvi(k) = Rxi(Nik), where Rxi(k) = (hi(k) � hi(−k)) �
Rx(k). Here hi(k) denotes the impulse response of Hi(z)
and “�” denotes convolution. Thus, the second-order statis-

tics of the observation signals and the power spectral density

(PSD) of x(k) are related as follows:

Rvi(k) =
1
2π

∫ π

−π

Px(ejω)‖Hi(ejω)‖2ejNikωdω.

Throughout, for simplicity, we assume x(n) a real valued pro-

cess and hence, it has a symmetric power spectrum which sat-

isfies:

Rvi
(k) =

1
π

∫ π

0

Px(ejω)‖Hi(ejω)‖2 cos(Nikω)dω. (1)

The autocorrelation samples Rvi
(k) of the observable low-

rate signals can be estimated from the corresponding sensors

measurements {vi(0), . . . , vi(Ki)}. The variance of the error

in the estimated autocorrelation samples, denoted by R̂vi(k),
increases as k increases. Thus, Rvi(k) can be estimated re-

liably only up to some order determined by the length of the
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time domain data. Here, we assume that autocorrelation co-

efficients of vi(n) have been estimated up to k = Li − 1,

for i = 1, 2, . . . respectively. Henceforth, these estimates are

denoted by

ρi(k) := R̂vi
(k) for 0 ≤ i ≤ M − 1, 0 ≤ k ≤ Li − 1 (2)

and the problem we address is to determine a power spectral
density Px(ejω) ≥ 0, which is consistent with the moment
constraints in (1) and (2).

This is a typical inverse problem since, in general, there

are many solutions which are consistent with the moment

constraints. It is a standard practice, in such inverse problems

to seek a maximum entropy solution (see [3, 4]). The basic

idea is to use entropy as a regularizing functional in order

to identify a solution. The principle of maximum entropy is

typically justified as seeking the power spectrum of the most

“unpredictable stochastic process” which is consistent with

moment constraints. Yet, a slight reformulation, where one

replaces the entropy functional with the Kullback-Leibler dis-

tance to another spectrum—a “prior,” leads to a versatile tool

for spectral analysis (see e.g., [4, 5]).

There have been several different approaches for solving

such optimization problems. The classical case of searching

for the maximum entropy given a number of ordinary autocor-

relation lags, leads to the set of linear Levinson’s equations.

This is of course not the case in general (see e.g., [2,6–9] and

the references therein). Jahromi et al. [1] followed a sim-

ilar formalism and developed an algorithm to approximate

the maximum entropy solution of multi-rate sampling spec-

tra. We follow instead the formalism in [2] and show that in

fact the approximate maximum entropy solution generated by

algorithm in [1] can be vastly different from the exact maxi-

mum entropy solution. We then show, that a fairly good fit to

simulated power spectra can be obtained from multi-rate co-

variance data and a reasonable choice of “priors,” in the spirit

of [5].

III. POWER SPECTRUM FROM MOMENTS

We seek power spectral distributions consistent with (1) and

a given set of estimated values for the second-order statistics

in (2). The values in (2) for such integral constraints are also

known as moments of the unknown distribution correspond-

ing to the integration kernels

gi,k(ω) :=
1
π
‖Hi(ejω)‖2 cos(kNiω),

with 0 ≤ i ≤ M − 1, 0 ≤ k ≤ Li − 1. In case the ker-

nel functions possess a “shift structure,” and they can be ob-

tained from one another by application of a suitable shift op-

erator (see [10]), then existence of solutions to (1) can be eas-

ily tested by checking positivity of an associated quadratic

form, and solutions can be obtained via solving linear equa-

tions which are analogous to the Levinson equations. How-

ever, when the integration kernels have no apparent structure,

as is the case here, solutions can be sought as extrema of reg-

ularizing (entropy) functionals. Below we explain one such

approach which is based on deforming the values for the mo-

ments (see [2] for details).

Let G(ω) := [g0,0(ω), g0,1(ω), . . .]T denote the col-

umn vector containing all the integration kernels, and simi-

larly let R = [ρ0(0), ρ0(1), . . .]T denote the corresponding

moments. Here “T ” denotes transposition. The moment con-

straints are now expressed compactly as

R :=
∫ π

0

P (ω)G(ω)dω (3)

where P (ω) is a simplified notation for the sought non-negative

distribution function Px(ejω).
The basic idea is to seek minimizers of suitable weighted

entropy functionals which can be expressed in closed form

(see [11] and the references therein). Indeed, the minimizer

of the Kullback-Leibler (KL) distance∫ π

0

Ψ(ω) log
(

Ψ(ω)
P (ω)

)
,

between a “prior” Ψ(ω) and P (ω) subject to (3), when it ex-

ists, it is of the form Ψ(ω)/〈λ, G(ω)〉 where λ is a vector of

Lagrange multipliers for the optimization problem and 〈·, ·〉
denotes inner product. Knowing the form of minimizers of

the KL-distance, we seek values for the vector λ which ren-

der it consistent with the moments, i.e., we seek a solution λ
to the nonlinear vectorial equation

R :=
∫ π

0

Ψ(ω)
〈λ, G(ω)〉G(ω)dω. (4)

This can be computed in the following way.

First note that (4) defines a mapping between the linear

spaces where λ and R reside. These have the same dimension.

Moment vectors R that are generated by a non-negative P (ω)
form a cone which we denote by K. Similarly, in the dual

space, Lagrange multipliers which give rise to a non-negative

distribution satisfy 〈λ, G(ω)〉 ≥ 0 for all ω in the support set

for the frequency variable. They form a dual cone, which we

denote by K∗
+. Finally, the Jacobian ∇h of the map h : λ �→

R specified by (4), is represented by the matrix

W (λ) :=
∫ π

0

(
G(ω)

Ψ(ω)
〈λ, G(ω)〉2 GT (ω)

)
dω

which turns out to be bounded and invertible for all λ in the

interior of K∗
+. Thus, in seeking a solution λ to (4) for any

given vector of moments R, we can trace a path from an ini-

tial choice λ0 ∈ K to the sought solution λ. The path can be
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readily constructed to correspond to the linear segment con-

necting R0 to R in the primal space. Both R0 (obtained from

a suitable starting value λ0) and R belong to K and hence the

path Rα = (1 − α)R0 + αR, for α ∈ [0, 1] lies in K as well.

Since dRα/dα = R − R0, the corresponding values in the

dual space satisfy

dλα

dα
= −W (λα)−1(R0 − R)

for α ∈ [0, 1], and after replacing the path variable α by t
where α = 1 − e−t,

dλ(t)
dt

= −W (λ)−1

(
R −

∫ π

0

G(ω)
Ψ(ω)

〈λ, G(ω)〉dω

)
(5)

for t ≥ 0. A schematic is shown in Fig. 2. Such a path

Fig. 2. Schematic of the homotopy path and the correspond-

ing trajectory in the space of λ

can be followed numerically if the Jacobian remains bounded

and nonsingular throughout. This is indeed the case provided

R ∈ K. If however, the data vector R does not allow for

a consistent power density function, the above differential

equation diverges in finite time (see [2, Theorem 2]).

Without loss of generality we can assume that the first

entry of G(ω) is positive throughout the range of frequen-

cies.1 Then a convenient starting point for integrating (5) is

λ0 = [1 0 . . . 0]T . Divergence suggests that the data vec-

tor R is not admissible and that no power spectrum consistent

with R is possible. On the other hand, if R is a legitimate set

of covariance samples then the solution λ(t) to (5) will tend

to a limit point, exponentially fast, as t → ∞ (see [2] for

details).

This theory can be readily applied for identifying a spec-

trum which is consistent with multirate observations. All that

is needed is a differential equation solver to integrate (5) start-

ing from λ0 until λ(tF ) so that Rt matches R to any given

accuracy. The steps involved for identifying a power spectral

density are summarized below.

1If it is not the case, equivalently a suitable linear combination of the

kernel functions can be placed as the first entry. Such linear combination exits

if the union of the pass band of the filters Hi(ω) covers the entire frequency

band.

Algorithm
Inputs:
ρi(k), for i = 0, . . . , M − 1 and k = 0, . . . , Li − 1,
transfer functions of Hi(z), down-sampling ratios Ni,
and a positive function Ψ(ω).
Output:
An estimate Px(ejω) of the input PSD.
Procedure:
1) Integrate dλ(t)

dt
as in (5) from t = 0 and λ(0) to t = tF .

2) Return Px(ejω) = Ψ(ω)/〈λ(tF ), G(ω)〉.

A nice feature of this algorithm is that given a “prior”

Ψ(ω) for the unknown density, it generates the closest den-

sity in a KL-like sense to Ψ(ω) which is consistent with the

measurements. Note that when Ψ(ω) = 1 the obtained solu-

tion has maximal possible entropy rate in the sense of Burg.

IV. NUMERICAL STUDIES

We demonstrate the performance of the proposed algorithm

by reworking Example 4 in [1] and compare our results with

the results presented there.

Example: Consider a M-channel multirate observer sys-

tem as in Fig. 1 with M = 3. We assume that the filters are

FIR filters with impulse responses

h0 = [0.075 0.167 0.205 0.166 0.075],
h1 = [0.465 0.125 − 0.315 0.097 − 0.026],
h2 = [0.193 0.423 0.367 − 0.097 − 0.040],
and downsampling-rates are N0 = 2, N1 = 2, and N2 = 4.

The frequency responses of these filters were designed sim-

ply to show lowpass, bandpass, and high-pass characteristics.

The unobservable input signal x(n) is chosen to be a lowpass

Gaussian ARMA process. Coefficients of this ARMA pro-

cess were calculated using MATLAB command [a,b]= YULE-
WALK (10, [0 .5 .8 1], [1 1 0 0]), and the PSD of x(n) is

taken as Px(ejω) = ‖a(e−jω)
b(e−jω) ‖2 for the calculated a and b.

The correlation coefficients associated with the low-rate

observable signals vi(n) are shown in Table I. Then Fig. 3

compares the approximate maximum entropy solution com-

puted in [1] with the exact solution obtained as in previous

section. In particular, Fig. 3a corresponds to the case when

only the data in the first three columns of the Table I is used,

i.e. L0 = L1 = L2 = 3. Fig. 3b shows the case when all the

data in the Table I, i.e. L0 = L1 = L2 = 6. Note that the

exact maximum entropy solution computed via the algorithm

proposed in this paper and the approximate one computed via

Jahromi et al. algorithm are vastly different.

It was explained that the output of the proposed algorithm

can be viewed as the best approximation of the “prior” Ψ(ω)
among all the PSD functions that are consistent with the given

statistics. In order to show the potential of such a tool we ap-

ply a lowpass prior template instead of Ψ(ω) = 1. In partic-

ular, Ψ(ω) is chosen as a lowpass Gaussian ARMA process
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again calculated via MATLAB filter design command [a,b]=
YULEWALK(8, [0 .54 .81 1], [1 1 0.01 0.01]). As the input

data we use only the first three columns of Table I similar to

Fig. 3a. The estimated spectrum is shown in Fig. 4. Com-

parison of Fig. 4 and Fig. 3a shows that using a reasonable

“prior” leads to a significantly better match.

Table 1. CORRELATION COEFFICIENTS

ρi(k) k=0 k=1 k=2 k=3 k=4 k=5

i=0 .1084 .0583 .0056 −.0001 .0000 .0000

i=1 .1974 −.1260 .0423 −.0169 .0063 −.0038

i=2 .0438 .0141 −.0002 .0008 −.0002 .0001

(a)

(b)

Fig. 3. PSD estimates using the data given in Table I.
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