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ABSTRACT
Harmonic probabilistic models are common in signal analy-

sis. Framed as a linear-Gaussian state-space model, smoothed

inference scales as O(TH2) where H is twice the number of

frequencies in the model and T is the length of the time-series.

Due to their central role in acoustic modelling, fast effec-

tive inference in this model is of some considerable interest.

We present a form of ‘rotation-corrected’ low-rank approx-

imation for the backward pass of the Rauch-Tung-Striebel

smoother. This provides an effective approximation with com-

putation complexity O(TSH) where S is the rank of the ap-

proximation.

1. INTRODUCTION

Harmonic signal decompositions are one of the main tools in

audio analysis and the harmonic plus noise model has recently

been used in several applications [1, 2, 3]. In its simplest form

we model a signal by a superposition of harmonic oscillators,

this being essentially the Fourier Representation. The proba-

bilistic interpretation of a Harmonic representation of a one-

dimensional signal from time 1 to time T, y1:T , is useful since

a generative model enables one to build in known constraints

about the signal generation process (see e.g. [2] for an appli-

cation). Here we concentrate on the simplest form of these

models, being essentially a bank of harmonic oscillators, and

show how inference can be computed efficiently.

A useful state-space representation of a single harmonic

oscillator is based on a two-dimensional latent linear dynam-

ics xt+1 = A(θ)xt, where A(θ) is a Givens Rotation matrix:

A(θ) = ρ

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)

Then xt describes a damped rotation in which at each timestep,

the vector rotates anticlockwise by θ degrees, with a length

reduction factor 0 < ρ < 1. The projection of this two-

dimensional vector onto the first dimension, x1,t then describes

a one-dimensional harmonic oscillator, as shown in fig(1).

The time-dependent energy related to this harmonic compo-

nent is given by the length of the vector xt. To describe a

Fig. 1. A damped oscillator in state space form. Left: At

each time step, the state vector x rotates by θ and its length

becomes shorter. Right: The actual waveform is a one dimen-

sional projection from the two dimensional state vector. The

stochastic model assumes that there are two independent ad-

ditive noise components that corrupt the state vector x and the

sample y, so the resulting waveform y1:T is a damped sinu-

soid with both phase and amplitude noise.

bank of such oscillators, rotating at different frequencies, we

form the block-diagonal damped rotation matrix

A =

⎛
⎜⎜⎜⎝

A(θ1) 0 · · · 0
0 A(θ2) 0
...

. . .
...

0 · · · 0 A(θn)

⎞
⎟⎟⎟⎠

To cope with the fact that a real signal will deviate from a per-

fect damped oscillator, we introduce additive Gaussian noise

both in the state-space

xt+1 = Axt + wt, wt ∼ N (0,Σx) (1)

and in the signal observation.

yt = Bxt + vt, vt ∼ N (0, Σy) (2)

Here xt is a H × H dimensional matrix, where H is equal

to twice the number of frequencies in the harmonic represen-

tation. B = [1, 0, 1, 0, . . . , 1, 0] is a 1 × H matrix (i.e. the

transpose of a H × 1 vector). This model accounts for both

amplitude and phase noise – a sample from such a model is

given in fig(2). An alternative probabilistic formulation of the

above equations is

p(xt|xt−1) = N (Atxt−1,Σx) (3)

p(yt|xt) = N (Ctxt,Σy) (4)
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Fig. 2. A sample from the Gaussian linear dynamical system

defined by equation (1) and equation (2) from a bank of 100

oscillators evenly spread between 0 and 2000 Hz.

which define a joint Gaussian probability distribution

p(x1:T , y1:T ) =
T∏

t=1

p(yt|xt)p(xt|xt−1) (5)

where, by convention, p(x1|x0) is a Gaussian distribution

with mean 0 and covariance Σx
1 . The above model is then

a constrained form of a Kalman Filter[4]. Given a set of ob-

servations y1:T , the two main interests are in calculating the

filtered posterior inference p(xt|y1:t) and the smoothed pos-

terior inference p(xt|y1:T ). We shall see that filtering is com-

putationally efficient, but smoothing is an order H more com-

putationally demanding. The aim of this paper is to introduce

an effective smoothing approximation for this important class

of models.

2. KALMAN FILTERING

The smoothed posterior p(xt|y1:t) is a Gaussian, whose mean

and covariance we denote by ft and Ft respectively. To com-

pute ft and Ft, we may use the well-known Kalman Filter

recursions[4] given in Algorithm 1. Here Pt and Ft are H×H
symmetric matrices and Gt is a H × 1 vector. The length

of signal T that we wish to perform filtering and smoothing

may be of the order of 104, so that storing these matrices

is prohibitive. In practice, the matrices Pt, Gt, Ft converge

quickly to a stationary value and we therefore adopt the usual

approach of replacing these quantities by their converged val-

ues, as given in Algorithm 2[4].

Algorithm 1 Kalman Filter

1: procedure KALMANFILTER

2: F0 ← 0, f0 ← 0
3: for t ← 1, T do
4: Pt ← AtFt−1A

T
t + Σx

5: Gt ← PtB
T

(
BPtB

T + Σy
)−1

6: Ft ← (I − GtB) Pt

7: ft ← Aft−1 − Gt (BAft−1 − yt)
8: end for
9: end procedure

Algorithm 2 Approximate Kalman Filter

1: procedure APPROXKALMANFILTER

2: F ← 0, f ← 0
3: repeatP ← AFAT + Σx

4: until P converges

5: G ← PBT
(
BPBT + Σy

)−1

6: F ← (I − GB)P
7: for t ← 1, T do
8: ft ← Aft−1 − G (BAft−1 − yt)
9: end for

10: end procedure

Algorithm 3 Kalman Smoothing : Rauch Tung Striebel

1: procedure KALMANSMOOTHER

2: RT ← FT , rT ← fT

3: for t ← T − 1, 1 do
4: X ← FtA

T
(
AFtA

T + Σx
)−1

5: U = I − XA
6: Rt ← XRt+1X

T + UFt

7: rt ← Xrt+1 + Uft

8: end for
9: end procedure

Since P , F and G may be computed offline in a one-off

computation, the complexity of Algorithm 2 for filtering a

signal y1:T is determined by the recursion ft ← Aft−1 −
G (BAft−1 − yt). Since BA is a (transposed) vector which

may be precomputed, the scalar BAft−1 takes order O(H)
computations. The term Aft−1 would ordinarily take O(H2)
operations. However, since A is block diagonal (consisting

of 2 × 2 rotation matrices on the diagonals), this also takes

O(H) operations. Hence, the complexity of computing f1:T

takes only order O(TH) operations. That is, the complexity

of filtering (given the converged approximate values for P ) is

linear in the number of harmonics desired and the length of

the time series – an agreeable complexity.

3. KALMAN SMOOTHING

Here we want to compute p(xt|y1:T ) which is a Gaussian

with mean rt and covariance Rt. The standard approach to

smoothing is to use the Rauch-Tung-Striebel smoother[4], as

presented in Algorithm 3, which makes use of the Kalman

Filter results. As in the Filtering recursions, the posterior co-

variance rapidly converges to a constant value, and we may

also replace the time-dependent forward covariances by their

converged estimates F . Since Rt does not depend on the ob-

servations, this may also be pre-computed. Hence, our main

concern is with the following equation

rt ← Xrt+1 + ft − XAft (6)
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Using the converged values, X is given by

X = FAT
(
AFAT + Σx

)−1

which is time-independent. However, unlike in the Filter re-

cursions, we cannot simply write X exactly as the outer-product

of two vectors and, unfortunately, this means that the compu-

tation of Xrt+1 is order O(H2). This is unacceptable since H
will typically be of the order of several hundred to a thousand.

Similarly, the term XAft is problematic and also has an exact

complexity of order O(H2). An obvious strategy would be to

replace X by a low-rank approximation. However, we may

empirically observe that no-such low rank approximation of

X exists, see for example fig(3), where typically nearly all the

singular values from a Singular Value Decomposition (SVD)

are close to unity. Hence, a naive strategy of projecting X
to a low-rank subspace will fail since nearly all the singular

values will be required for an accurate representation of X .
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Fig. 3. The singular values for a the matrix X formed from

a bank of 100 oscillators evenly spread from 0 to 2000 Hz.

The coefficient ρ is set to 0.999. The state covariances were

set to Σx = 10−3IH and the observation variance was set to

Σy = 10−6.

3.1. A low rank ‘rotation’ compensated Approximation

First we write r̂t+1 = rt+1 −Aft, so that equation (6) can be

written as

rt = ft + Xr̂t+1

Computing r̂t+1 is O(H) again thanks to the fact that A is

block diagonal. We now concentrate on X . This is given by

X = FAT
(
AFAT + Σx

)−1

Using the converged Kalman Filter equations

P = AFAT + Σx, F = P − GBP

we may write

X = PAT P−1 − GBPAT P−1 (7)

Bearing in mind that if X was of low rank, then the compu-

tational complexity would be modest, our aim is to find an ap-

proximate suitable decomposition of X . The term GBPAT P−1

in equation (7) is unproblematic since this is indeed trivially

of the form of the outerproduct of the vector G with the vec-

tor P−T APT BT . Hence, this term causes no difficulty. Un-

fortunately, the term PAT P−1 does not possess a low rank

approximation. The fundamental reason for this is that A is

(proportional to) a rotation matrix – even if P were the iden-

tity, then A itself cannot have a low-rank approximation since

it rotates all components. However, we may gain some insight

into forming a useful approximation by the following reason-

ing. One may view the matrix PAT P−1 as follows : P−1

first transforms into a new basis, we then perform a rotation

in the basis (performed by AT which corresponds to inverse

rotation of A), and then transform back to the original basis.

Hence, if the rotation AT is relatively weak, then we may ex-

pect that the transformation PAT P−1 has roughly the same

effect as a rotation AT in the original basis. This is depicted in

fig(4). The idea, therefore, is that K = PAT P−1 − AT may

2
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Fig. 4. The effect of the operations PAT P−1. First the vector

depicted 1 is transformed by P−1 into a new representation,

vector 2. Then this vector is rotated by AT to the vector 3,

and then transformed back to the original basis, depicted by

vector 4. If the rotation AT is not too strong, then this will be

roughly equivalent to rotating the original vector 1 by AT .

have a low rank approximation. The singular values of this

rotation-corrected matrix are depicted in fig(5), where we see

that indeed, a low rank approximation would be reasonable.

A more sophisticated approximation would be to assume that
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Fig. 5. The singular values for a the matrix K = PAT P−1 −
AT formed from a bank of 100 oscillators even spread from

0 to 2000 Hz. The coefficient ρ is set to 0.999. The state

covariances were set to Σx = 10−3IH and the observation

variance was set to Σy = 10−6. Contrast this with fig(3).

PAT P−1 ≈ P̂AT P̂−1 where P̂ is formed from a block di-

agonal approximation of P , although we have found that, in

practice, the simpler approximation produces reasonable re-

sults.

A low rank approximation for K is then obtained by com-
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puting the Singular Value Decomposition K = UDV T . Then

by taking only the first S singular values, we obtain an ap-

proximation K ≈ Û V̂ where Û is obtained from the first S
columns of U , and V̂ is obtained from the first S rows of

DV T . With this we then may write

X ≈ Û V̂ + AT − GBPAT P−1

rt = ft + Û
(
V̂ r̂t+1

)
+ AT r̂t+1 − G

(
BPAT P−1

)
r̂t+1

The complexity of the final term G
(
BPAT P−1

)
r̂t+1 is O(H),

as is AT r̂t+1 and ft. The complexity of Û
(
V̂ r̂t+1

)
is O(SH)

where S is the rank of the SVD approximation. Note that the

SVD approximation can be computed offline, and is a one-

time only computation.

3.2. Demonstration

In fig(6) we show a sample waveform for which we wish to

find a harmonic representation using 200 frequencies evenly

distributed between 0 and 2000 Hz. In fig(7) we plot the fil-

tered spectrogram (1.3 seconds of computation using a Pen-

tium III processor with 1 Gbyte of RAM), the exact smoothed

posterior (90 seconds) and the rank 30 approximation of the

smoothed posterior (7 seconds). The errors made by the ap-

proximation are given in fig(8), where we see that, crucially,

in the regions where the posterior components are large, then

the approximation is very accurate, with a mean absolute de-

viation of 0.002. Plotting the relative deviation is less mean-

ingful since the spectrogram has mainly small values, although

it is the relatively few larger values for which the approxima-

tion needs to be accurate.

Fig. 6. The waveform, corresponding to 2.5 seconds of

speech, with 8000 samples per second.

Fig. 7. Spectrograms (log energy) of the waveform fig(6).

Left: Filtered estimate p(xt|v1:t). Middle: exact smoothed

posterior p(xt|v1:T ). Right: approximation of the smoothed

posterior using a rank 30 approximation.
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Fig. 8. Each x, y point in this graph corresponds to a value

(rt,i, r̂t,i) where rt,i is the exact value of the ith frequency

component of the posterior vector p(rt|v1:T ), and r̂t,i is the

corresponding rank S = 30 approximation. The mean ab-

solute deviation of the approximation is 0.002.

4. CONCLUSION

Formulated as a linear dynamical system, filtered inference

in Harmonic models can be carried out computationally effi-

ciently using the Kalman Filter recursions, scaling as O(TH)
where H are the number of frequencies of the model and

T is the length of the time series. However, the smoothed

posterior cannot be exactly computed in a reasonable time,

with the exact computation scaling as O(TH2). A naive low-

rank approximation of the recursion also does not yield an ef-

fective approximation. However, our rotation-corrected low-

rank approximation does provide an effective approximation

to smoothing, with complexity O(TSH) where S is the rank

of the approximation. Typically, we have found that a rank

of less than 20 is often sufficient for a reasonable approxi-

mation. This approximation technique can also be applied to

more complex harmonic models (e.g. work deriving from [1])

and related probabilistic models in acoustics.

5. REFERENCES

[1] R.J. McAulay and Quateri. T.F, “Speech analy-

sis/synthesis based on a sinusoidal representation,” IEEE
Trans. on acoustics, speech and signal processing, vol.

34, no. 4, pp. 744–754, 1986.

[2] A. T. Cemgil, B. Kappen, and D. Barber, “A Generative

Model for Music Transcription,” IEEE Transactions on
Speech and Audio Processing, 2004, Accepted.

[3] A. T. Cemgil, B. Kappen, and D. Barber, “Generative

Model based Polyphonic Music Transcription,” in IEEE
Workshop on Applications of Signal Processing to Audio
and Acoustics (WASPAA) , 2003.

[4] Y. Bar-Shalom and Xiao-Rong Li, Estimation and Track-
ing : Principles, Techniques and Software, Artech House,

Norwood, MA, 1998.

III  531


