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ABSTRACT

This work investigates the statistical limits for the detection of rapid
stellar variations using ground based fast photometry. We show that
the noise to be accounted for is of a Mixed Poisson (MP) nature (pho-
ton noise mixed by scintillation). As a consequence, three regimes
appear for the detection depending on the star’s brightness : scin-
tillation; scintillation and photon noise; photon noise and sky back-
ground. Both cases of periodic and non periodic signals are inves-
tigated. In the case of periodic stellar variations, the minimum am-
plitude variation that one can detect with a given confidence level is
evaluated by analysing the statistics of the MP noise periodogram.
The theoretical detection limits are discussed at the light of photo-
metric data obtained on various astronomical sites.

1. INTRODUCTION

The General Combined Catalogue of Variable Stars [1] reports the
variability characteristics of tens of class of variable stars. The lumi-
nosity variations exhibited by these stars depend on their mass, struc-
ture, binarity, evolutionary status, and chemical composition. Their
variations may be periodic or quasi-periodic (pulsating stars, rotat-
ing variables, eclipsing binaries), or aperiodic (eruptive variables,
optical reprocessing in X-ray binaries). Many variables exhibit short
timescale, and small amplitude photometric variations. Photomet-
ric means that we are interested in measuring the quantity of light
during a certain amount of time, possibly in a particular band. This
paper proposes a statistical evaluation of the performances of ground
based photometric observations aimed to detect rapid stellar varia-
tions with a high precision. The typical time scale of the researched
oscillations ranges from minutes to hours. Because we are inter-
ested in detecting short timescale phenomena, the time sampling of
the light curves is typically a few tens of seconds. The technique
is called fast photometry. High precision photometry is important
because the higher the precision, the stronger the constraint on the
physical parameters, and the more accurate the astrophysical mod-
els.
The detection limits of stellar variations are known to depend on
many parameters. Firstly, on the site : altitude, atmosphere (scin-
tillation, sky transparency variations, extinction in the considered
band, light pollution, etc...); secondly, on the telescope (telescope’s
aperture, reflectivity of primary and secondary mirrors); thirdly, on
the position of the target star w.r.t. zenith (airmass); fourthly, on the
observation’s wavelength and on the filter bandwidth; and finally on
some of our world’s constants. It is known for a long time how one
or a few particular factors above affect the detection [2, 3, 4]. The
characterisation of the overall noise in a global statistical setting has
however not been carried out yet. In this framework, the contribu-
tions attempted in this work are twofold. Firstly, we are interested
in modeling analytically the contributions of the noises sources in
fast photometric observations, for any given star’s magnitude and
position in the sky, and for any given observational setting (site &
telescope). Secondly, we wish to derive the detection limits imposed

by the overall noise. Both the cases of periodic and non periodic
stellar variations are investigated (see Sec 2). The results are applied
to the sites of Manora Peak (104cm telescope, where fast photomet-
ric observations of various objects are currently carried out [4]), to
the Devasthal site (where a fully automated telescope is being built,
and for which a 3m telescope is planned) and to other astronomical
sites (Sec. 4).
The rest of the paper is organised as follows. In the second section
we investigate the number of photons to be detected (signal), the sta-
tistics of the noise photons, and the Signal-to-Noise Ratio (SNR) in
the light curves. The third section turns to the noise level and the
SNR in the Fourier amplitude spectrum, and to the detection lim-
its corresponding to a given confidence level. The validity of these
results is assessed in Section 4.

2. PHOTONS FROM STARS AND PHOTONS FROM NOISE

2.1. Photons from Stellar Signal
In the following, the subscripts ∗ and sky correspond respectively
to the star and to the sky background. (The sky background is the
light coming from the sky, which is never perfectly dark. The cor-
responding light is thus always detected in addition to that of the
star.) The notations F , f and n denote respectively fluxes, magni-
tudes and numbers of photons. It is customary in Astronomy to use
(milli)magnitudes [(m)mag, dimensionless] instead of fluxes [erg/
cm2/ s /Å]. Evaluating the quantity of light by number of photons is
also useful because photons (light quanta) rather fluxes are actually
detected. We shall therefore use these three quantities equivalently.
The relationship of magnitude to flux is f = −2.5 log10[F/F∗(0)],
where F∗(0) is the reference flux at magnitude zero. The relation-
ship of photons n to flux F is n = F∆λS(hc

λ
)−1, where ∆λ, S, h,

c and λ are respectively the filter bandwidth [Å], the surface of the
telescope’s aperture [cm2], the Planck’s constant [erg s], the speed
of light [Å/s] and the wavelength of light [Å]. The quantity (hc

λ
) is

then the energy of one photon [erg].
In the case where the stellar variation is not periodic, it will take the
form of a random light curve. For the purpose of making a model,
we shall quantify this stellar variation by a variation in flux with
standard deviation (std) ∆F (or ∆f mag, or ∆n photons) w.r.t. the
average stellar flux. In the case where the variation is periodic, the
corresponding std in flux will be denoted by ∆F , or ∆f /∆n as well.
We shall focus on the periodic case (pulsating stars typically) be-
cause we have in mind to turn to the Fourier spectra later on (Sec.
3). The results of the present Section, which regard light curves, are
valid in both the periodic and aperiodic cases : ∆F has just to be
given the corresponding definition.
So let us assume that a target star of average magnitude f∗ and av-
erage flux F∗ oscillates with an amplitude (half peak to peak varia-
tion) of a few mmag ∆fmax. Without loss of generality, the oscil-
lation can be assumed to be zero mean and sinusoidal [5]. Then
the amplitude variation in mag w.r.t. the average stellar level is
∆fmax =

√
2∆f , or, in photons,

√
2∆n. With the definitions

III  524142440469X/06/$20.00 ©2006 IEEE ICASSP 2006



above, the std in magnitude ∆f corresponding to the stellar vari-
ation w.r.t. f∗ can easily be related to the std in photons ∆n by
∆f = 2.5 log10(1 + ∆n

n∗ ). Using an analysis similar to that of [6],
eq. (6), the number of photons from signal falling on the detector
during Tint seconds is

∆n=∆F∆λSε η10{−0.4x(λ) sec Z}Tint

�
hc

λ

�−1

=∆Fα

�
hc

λ

�−1

,

(1)
where ε, η, x(λ) and sec Z are respectively the reflectivity of the
mirrors (dimensionless) and possibly the transmission of a Fabry
Lens, the quantum efficiency of the detector (dimensionless), the ex-
tinction in the considered band [mag] and the airmass (indicating the
position of the star w.r.t. zenith, dimensionless). In eq. (1), the co-
efficient α contains the parameters of the considered observational
setting (site & telescope).
The results below regard B band (λ = 4380Å). A (Johnson) filter of
bandwidth 940 Å is assumed. The sky brightness fsky is 22.2 mag
in B for both sites, see [7] for a complete list of numerical values.
Using these data, the expected number of photons n∗ correspond-
ing to F∗, and the number of photons nsky corresponding to the sky
background can be derived in the same manner as in eq. (1).
The signal that we seek to detect in the light curves is the stel-
lar variation w.r.t. the average level of light (star plus sky back-
ground). Consequently, the apparent amplitude variation in the light
curve ∆fmax,a (w.r.t. star plus background), will be different from
∆fmax (w.r.t. star only). We obtain

∆fmax,a =2.5 log(1+

√
2∆n

n∗ + nsky
)≈∆fmax

�
1− nsky

n∗

�
. (2)

The fainter the stars, the less important the stellar variation relatively
to the background. For bright stars, ∆fmax,a is sensibly equal to
∆fmax; this is not true for faint stars.

2.2. Mixed-Poisson nature of the noise
Now, because of two major random noise effects (scintillation and
detection noise), the actual number of detected photons is random,
even for a non variable star with constant flux F∗. This noise creates
a scatter in the data points of the light curve (with std ∆nnoise pho-
tons), which may hide the stellar variation. This unavoidable scatter
should be compared to ∆n of eq. (1) to evaluate how much it per-
turbs the visibility of the stellar signal.
Firstly, random changes in temperature occur in the atmosphere,
which in turn generate random fluctuations of the air’s refractive in-
dex. The effects of these fluctuations are to randomly defocus the
star, creating scintillation [8]. Consequently, any deterministic flux
propagating through these turbulent layers becomes random. The std
of the scintillation level, expressed in number of photons ∆nsc, can
be established from [8], eq. (10), as

∆nsc = 0.09 D− 2
3 (sec Z)1.75e

− h
h0 (2Tint)

− 1
2 n∗ = βn∗. (3)

In the above equation, D is the telescope diameter (in cm), h the
altitude (1951 m for Manora Peak, 2420 m for Devasthal) and h0 =
8000 m. A typical integration time in fast photometry is Tint = 10
s. All the results below are established for this value. In eq. (3), the
coefficient β contains the parameters of the observational setting.
Secondly, the detection of the photons is random because of the
quantum nature of light. Both the star’s and sky’s lights contribute
to the random fluctuations in the detection. In the absence of at-
mosphere, the statistics of the detected photons for a non variable
star with constant flux F∗ would be Poissonian, with mean and vari-
ance n∗ + nsky [2].
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Fig. 1. Number of photons from signal and noise at the Manora Peak
site (the signal is magnified by 10 for the sake of visibility).

Accounting now for photon and scintillation noises together, the
number of detected photons follows a doubly stochastic process : the
process is Poisson (because of detection noise) with a mean which
is itself stochastic (because of scintillation). The probability of de-
tecting ntot photons given F is P (ntot|F ). Let us denote by p(F )
the flux’s distribution caused by scintillation. From eq. (1), the ex-
pected number of detected photons corresponding to a given flux F
is α λ

hc
F . But because F is random, we have to account for all the

values of F to get the actual distribution of the number of detected
photons ntot. The probability of detecting ntot photons is then

P (ntot)=

� +∞

0

P (ntot|F )p(F )dF=

� +∞

0

(
αλ

hc
F )ntot e−

αλ
hc

F

ntot!
p(F )dF.

(4)
This defines a mixed-Poisson (MP) process. The study of such processes
can be found mostly in the literatures of communications (eq. (4) is
often referred to as doubly stochastic processes [9]), statistical op-
tics (Poisson-Mandel transform [10]), actuarial statistics [11], and
more recently in astronomy [12]. Depending on the power of the
scintillation noise, the mixing process is here either Gaussian, log-
normal or follows an F distribution [8]. Now, as far as the noise
scatter is concerned, it is sufficient to evaluate the variance of the
MP process. Irrespectively of the particular distribution p(F ) of the
mixing process, the variance of the MP process equals the sum of
the variances of the two stochastic processes (photon noise and scin-
tillation in our case) [11]. Consequently, with eq. (3), the associated
variance is nsky +n∗+β2n2

∗. The std of the overall noise, expressed
in photons and including the joint effects of scintillation and photon
(star and sky background) noises, becomes

∆nnoise =
�
nsky + n∗ + β2n2

∗
� 1

2 . (5)

Indeed, the above expression tends to ∆nsc as the photon noise is
negligible (nsky + n∗ << β2n2

∗), and to
√

nsky + n∗ as the scin-
tillation noise in negligible (β2n2

∗ << nsky + n∗).
Equivalently, the overall scatter becomes in terms of magnitude

∆fnoise = 2.5 log(1 +

�
n∗ + nsky + β2n2∗

n∗ + nsky
). (6)

The typical noise to be accounted for at Devasthal is presented in Fig.
1 for a 2 mmag amplitude signal (about 0.1% in flux), star at zenith.
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Three regimes appear for the detection : for 1 m class telescopes,
scintillation dominates for stars brighter than ≈ 10th mag; scintil-
lation and photon noises are of comparable influence up to ≈ 15th
mag stars; photon noise and sky background dominate for fainter
stars. From the statistics’ viewpoint, the doubly stochastic nature of
the noise process is dominated by one of its stochastic component
(scintillation) for bright stars. The noise process is clearly doubly
stochastic for stars of intermediate magnitude, for which both noises
prevail. For fainter stars, it is dominated by the effects of the other
stochastic component (photon noise). The magnitude at which pho-
ton noise and scintillation are equal is indicated in the graph.
The statistical description above does not appear in the literature
dealing with the analysis of photometric light curves. It provides
a precise description of how photon and scintillation noise are bal-
anced for any given star’s magnitude and observational parameters
(through α and β of eq. (1) and (3)). The noise process is described
here by the same model (4) irrespectively of the star’s magnitude.
The two simple situations where either scintillation or photon noise
dominates are just two extreme approximations of this model.

2.3. SNR in the Light Curves
The SNR in the temporal domain SNRt can be evaluated with eq.
(1) and (5) (or equivalently with eq. (2) and (6)) as

SNRt =
∆n

∆nnoise
=

∆fmax,a/
√

2

∆fnoise
=

∆n

(nsky + n∗ + β2n∗2)
1
2

.

(7)
We show that for 1 m telescopes and for stars brighter than 12th
mag, ≈ 2 mmag corresponds to the amplitude limit below which
the number of signal photons becomes inferior to that of the noise
photons (SNRt < 1). This corresponds to a raw detection limit
of non periodic signals. As shown below, one can indeed detect
much weaker signals if they are periodic, by analysing the Fourier
spectrum of the light curves.

3. SPECTRAL ANALYSIS

In the amplitude spectrum, the expected noise level decreases as
1/

√
N , where N is the number of data points (see e.g. [13]). Using

eq. (6), the noise level is here given by

∆fnoise/bin = 2
∆fnoise√

N
=

5√
N

log(1+

�
n∗ + nsky + β2n2∗

n∗ + nsky
).

(8)
The SNR at signal’s frequency (SNRν ) is the ratio of the expected
level of the signal’s peak to the expected noise level in the amplitude
spectrum. In our case it becomes, see for example [13], eq. (9),

SNRν =
∆fmax,a

∆fnoise/bin
=

�
N

2
SNRt. (9)

Numerical evaluations show that the SNR in the signal’s frequency
bin is fairly high (>> 1) for oscillation of a few mmag. This means
that in average, the peak of the signal will be SNRν times higher
than the expected level of the noise. But in each bin, the amplitude
spectrum is indeed a random quantity. Consequently, high peaks can
be randomly generated by noise. When neither the frequency of the
signal nor the SNR are known a priori, it may be difficult to reliably
detect the signal : many peaks may be signal candidates. Hence,
the SNR by itself does not say enough : a confidence level corre-
sponding to a given SNR must be defined and evaluated. In order to
do so, it is necessary to determine the statistics of the noise in the
spectrum. It is classical for that purpose to assume that the noise is
additive, white and Gaussian (e.g. [2]). This assumption is question-
able, since from Sec. 2, the noise is MP in nature.
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Fig. 2. Statistics of the periodogram. Top panel : Normalised peri-
odogram of the observed noise for the bright star HD 98851. Bottom
panel : corresponding histogram of the periodogram, and histograms
obtained for mixed-Poisson processes for 12th and 15th mag stars.

In the case of bright stars, the contribution of the photon noise (Pois-
son component) is negligible (Fig 1). An analysis of the scintillation
noise shows that for good astronomical sites, the distribution of the
scintillation is actually very close to a Gaussian [7]. So the classical
analysis of the periodogram statistics is clearly valid for bright stars.
In this case, the periodogram is exponentially distributed [13]. Fig. 2
compares the empirical distribution of the periodogram of the noise
obtained for a particular star (HD 98851), to that of a white Gaussian
noise. The exponential distribution is clearly a good model.

For fainter stars, the noise process will be Poisson mixed by a
Gaussian process, or purely Poisson for very faint stars. In both
cases, it is not clear analytically what will be the distribution of the
periodogram. We checked this point by simulations for stars of 12th
mag (photon noise and scintillation are comparable) and 15th mag
(photon noise dominates in the mixed-Poisson process), see Fig. 2.
In all cases, the exponential model is accurate. This model is used in
the confidence analysis summarized below.
Since the signal’s frequency is unknown, one should check how
likely is the noise to randomly generate high peaks in the frequency
bins. In order to do that, one can firstly compare any given sig-
nal peak candidate to the statistics of the peaks’ maxima. In the
exponential model, the expected level of the maxima in the am-
plitude spectrum is M ≈ (

�N/2
k=1

1
k
)

1
2 fnoise/bin. This level gives

some insight on the statistical likelihood of high noise peaks. Sec-
ondly, a confidence level of C % means that a peak which is SNRν

times higher than the expected noise level, will not have been gen-
erated by the noise C % of the time. C is readily given by C =

100 × (1 − e−SNR2
ν )N/2. Finally, with the eq. (2) and (8) above,

and eq. (18) from [13], we obtain for the minimum amplitude varia-
tion fmin that can be detected with a given confidence level (Fig. 3)

fmin =2.5(1+
nsky

n∗
) log

�
1+

2∆nnoise(− ln[1 − C
2
N ]

1
2

n∗ + nsky

�
. (10)

4. COMPARISONS WITH REAL DATA AND DISCUSSIONS

The examples below are drawn from results of the NainiTal-Cape
Survey (see [7] for an extensive comparison of the proposed model
with real data). The data are time-series photometric observations
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composed of contiguous 10-s integrations lasting for 1 to 3 hr. The
data reduction process allows one to remove several atmospheric ef-
fects like extinction, sky brithness variations, and sky transparency
variations (to some extent).
Regarding the noise scatter in the light curves firstly, the model (eq.
(6)) predicts for bright stars (less than 11th mag) and for 1m tele-
scopes to a typical scatter of ≈ 1.1 mmag. The typical scatter actu-
ally observed during best nights at Manora Peak is between 1 and 2
mmag. In the example of HD 98851 mentioned above, the scatter is
1.6 mmag. This level is comparable to that observed at Sutherland,
South Africa and is typical of other good photometric sites such as
La Silla, Canarie Islands, and Granada [7]. For the 3 m telescope at
Devasthal, the noise scatter is expected from eq. (6) to reach almost
0.5 mmag for bright stars. For comparison, the authors of [2] re-
ported observations of the scatter for bright stars at Kitt Peak (U.S.,
2120 m, 2.1m telescope, average on 8 hours) of about 0.8 mmag
with 10 sec integration, and of 0.4 mmag with Tint = 60 sec. For
these settings, our model yields respectively 0.7 and 0.3 mmag.
We shall secondly turn to the noise in the amplitude spectrum. The
three examples of Fig. 4 correspond to stars for which no detec-
tion could be claimed. Below 2 mHz, residual variations in the sky
transparency may create a higher noise level in the spectrum (HD
1607 for example). It does however not affect the detection of rapid
variations (above 1 mHz, see [7] for a discussion). For these exam-
ples (HD 1607 : f∗ = 9.06; HD 57955 : f∗ = 8.00; HD 144999
: f∗ = 8.10), the predicted noise peak level is 0.24, 0.26 and 0.21
mmag respectively. The actual level of the peaks above 1 mHz is
0.24, 0.28 and 0.78 mmag. So for good nights (the most interesting
ones indeed), the MP model (dashed line) evaluates fairly accurately
the noise level in the spectrum as well. The third example is repre-
sentative of a so called non photometric night. It is shown to illus-
trate that the agreement of the model with real data indeed depends
on the quality of the night (stability of the atmosphere, etc). Turning
finally to a different site, Martinez and Kurtz [3] report an empirical
detection limit of 0.35 mmag in 1 h from their observational expe-
rience at Sutherland (South Africa), for bright stars and with a 1m
telescope (p. 134). For the corresponding parameters and for a 7
mag star, the present model yields a detection limit of 0.36 mmag
with 99% confidence.
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Fig. 4. Examples of spectra obtained at Manora Peak for the
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peaks maxima according to the model, for the star’s magnitude and
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