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ABSTRACT
One important challenge in parametric spectrum estimation is
the choice of an optimum number of parameters. In this pa-
per, we provide a new method of order selection for the spec-
trum density estimation denoted by data model error white-
ness (DMEW) criterion. Unlike the existing methods, this
approach estimates the parameters and selects the optimum
order simultaneously. We demonstrate the advantages of the
new method over the existing approaches.

1. INTRODUCTION

We consider the power spectral density estimation of a wide-
sense stationary (WSS) random process and the problem of
order selection for parametric model-based spectrum estima-
tions. We provide a new criterion for comparison of models
of different order. In the existing parametric estimation meth-
ods, such as Yule-Walker and covariance methods, the data
modeling error plays a very important role [4, 5]. The new
approach examines whiteness of this error. Calculation of the
new criterion is similar to the calculation of mean square error
in data denoising which is presented in [1].

2. ORDER SELECTION AND PARAMETRIC
SPECTRUM ESTIMATION (OSPSE)

Consider a wide sense stationary (WSS) random process Y
which is generated by the following minimum phase rational
system

Y (ejω) =
∑q

k=0 bq(k)e−jkω

1 − ∑p
k=1 ap(k)e−jkω

W (ejω). (1)

Finite length, N , sample of this random process, yN = [y[1],
y[2], · · · , y[N ]]T , is available. Parametric spectrum estima-
tion (PSE) method uses the available data, yN , to estimate
the random process and its power spectral density Py(ejω) as
follows:

Ŷ (ejω) =
∑q

k=0 b̂q(k)e−jkω

1 − ∑p
k=1 âp(k)e−jkω

W (ejω), (2)

P̂y(ejω) =
|∑q

k=0 b̂q(k)e−jkω|2
|1 − ∑p

k=1 âp(k)e−jkω|2 . (3)

where w[n] is a zero-mean white noise with unit variance.
For given orders p and q, PSE uses the observed data yN to
find estimates Âp = [âp(1), âp(2) , · · · , âp(p)] and B̂q =
[b̂q(1), b̂q(2), · · · , b̂q(q)]. However, if the correct orders are
not known, an order selection and parametric spectrum esti-
mation (OSPSE) method selects the optimum orders popt and
qopt, and provides the coefficient estimates, Âpopt and B̂popt .

2.1. All-pole Modeling and OSPSE

Random process Y in (1) can be modeled with the following
all-pole structure

Y (ejω) =
b∗

1 − ∑p∗
k=1 a∗

p∗(k)e−jkω
W (ejω). (4)

If the true model in (1) is such that q = 0, then p∗ = p,
a∗

p∗ = ap and b∗ = bq(0). If the true model has any zeros
involved, then p∗ in (4) is infinite.

From (4), the random process in time domain has the fol-
lowing structure

y[n] −
p∗∑

k=1

a∗
p∗(k)y[n − k] = b∗w[n]. (5)

where the coefficients in Ap∗ represent impulse response h∗

with the following z-transform

h∗(z) =
p∗∑

k=1

a∗
p∗(k)z−k. (6)

Figure 1 shows the considered all-pole model structure and
Figure 2 shows the estimated model for a given order p with
ĥAp , the impulse response estimate, and yÂp

, the data esti-
mate

hÂp
=

p∑

k=1

âp(k)z−k, yÂp
= hÂp

∗ y, (7)

where ‘*’ denotes the convolution operator. In this modeling,
the data modeling error (DME) is

eÂp
[n] = y[n] − yÂp

[n]. (8)
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Fig. 1. Desired all-pole model.

An OSPSE method compares models of different order and
chooses the optimum order popt and the corresponding coef-
ficients b̂popt and Âpopt (or equivalently ĥpopt).
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Fig. 2. Estimated all-pole structure for a given order p.

3. EXISTING OSPSE METHODS

The existing OSPSE methods separate the modeling to the
following two steps:

3.1. Data Modeling Error (DME) and PSE Step

To calculate parameter estimates for a given order p, well
known PSE methods such as Yule-walker or autocorrelation
method, Burg’s method, covariance method, and modified co-
variance method can be used. In all these methods, the desired
solution is

A∗
p = arg min

Ap

E(|eAp [n]|2), |b∗p|2 = E(|eA∗
p
[n]|2). (9)

The importance of minimizing this error is rooted in the fact
that if the order of the true model is p, then minimizing
E(|eAp [n]|2) provides the correct parameters. However, in
practical application E(|eAp [n]|2) is not available. In some
PSE methods, such as Yule-Walker, the estimate of A∗

p is cal-
culated by using the empirical estimate of the autocorrelation
function. Other approaches, such as covariance method, fo-
cus on minimizing the empirical estimate of E(|eAp [n]|2) and
the estimate of the optimum coefficient is

Âp = arg min
Ap

1
N − p

N∑

n=1+p

|eAp [n]|2. (10)

In this approach, as the data length increases, convergence
of the parameter estimates to the desired parameters in (9) is
usually faster than that of the Yule-Walker approach.

3.2. Order Selection Step

The mean-square error of the modeling error is

m(p, yN ) =
1

N − p

N∑

n=1+p

|eÂp
[n]|2. (11)

This modeling error is an important element in comparison
of model sets of different order. To compensate for the fact
that this is a decreasing function of p, the order selection ap-
proaches use an additional term and provide criteria with the
following structure

C(p, yN ) = m(p, yN ) + p
f(N)

N
, (12)

where f(N) is a function of data length N and the penalty
term p f(N)

N is an increasing function of p. The optimum order
minimizes the desired criterion

popt = arg min
p

C(p, yN ). (13)

Two well known OEPSE methods are Akaike information cri-
terion (AIC), with f(N) = 2, and two-stage minimum de-
scription length (MDL) approach with f(N) = log(N) [6, 7].

4. A NEW OSPSE METHOD: DME WHITENESS
(DMEW) CRITERION

As it was mentioned in the previous section, DME (eAp
[n]

in (8)) plays an important role in the existing OSPSE ap-
proaches (11,12). In these approaches the goal is to minimize
the mean-square of this error for any model of order p. Here,
we present a new OSPSE approach based on comparison of
the desired structure in Figure 1 and the model of order p in
Figure 2. To make the structure of the model estimate as close
as possible to the desired model, it is not necessarily needed
to make the variance of eAp [n] small, but rather, it is needed
for this error to have the properties of a white noise similar
to b∗w[n]. Therefore, to choose the optimum parameter for a
given p and evaluate the estimated models of different order,
the “whiteness” of the DME needs to be examined. The more
colored eAp [n] is, the farther it is from the desired white noise
b∗w[n]. The following lemma shows the connection between
the DME and the desired white noise:
lemma: The DME, defined in (8)(shown in Figure 2), is

eAp = b∗w + y ∗ (h∗ − hAp). (14)

Proof:

eAp
= y − y ∗ hAp

= y ∗ (1 − hAp
) (15)

= b∗w ∗ 1
1−h∗ ∗ (1 − hAp) = b∗w + b∗w ∗ h∗−hAp

1−h∗ (16)

= b∗w + y ∗ (h∗ − hAp). ♦
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The lemma provides useful information about the colored er-
ror DME. The behavior of y∗(h∗−hAp) represents the close-
ness of DME to the desired white noise b∗w[n]

vAp
[n] = eAp

[n] − b∗w[n] = y ∗ (h∗ − hAp
). (17)

The smaller this random variable is, the closer our model is to
the desired model in Figure 1. Therefore, E(|vAp [n]|2) can
be used to evaluate the whiteness error. However, note that
with only the available finite data, calculation of this value is
impossible. Similar to the existing PSE methods, we suggest
using the empirical estimate of this error

WNME(p,Ap, y
N ) =

1
N

N∑

n=1

||vAp [n]||2, (18)

which is defined as white noise modeling error. Minimiz-
ing this error over all the orders and the parameters provides
the optimum order and coefficients estimates simultaneously.
Nevertheless, the minimization can be provided in two steps.
For a fixed p, minimizing WNME provides Âp. Interestingly,
solving this minimization is identical to calculation of para-
meter estimates in the available PSE covariance method

Âp = arg min
Ap

WNME(p,Ap, y
N ). (19)

Minimum of the WNME error, given order p, is denoted as
data modeling error whiteness (DMEW) criterion

DMEW(p, yN ) = WNME(p, Âp, y
N ). (20)

The optimum order minimizes the desired criterion

popt = arg min
p

DMEW(p, yN ). (21)

4.1. Calculation of DMEW Criterion

In order to examine the whiteness of the available DME in
(8), the unavailable error vÂp

[n] is needed. In DMEW, the
desired criterion in (20), which is the mean-square error of
vÂp

[n], is estimated using the available mean-square error of

DME, m(p, yN ) in (11). While in the existing approaches,
to define a criterion, m(p, yN ) is used as an additive term,
in DMEW approach the same quantity is used in a novel ap-
proach to probabilistically validate proper bounds on the de-
sired criterion

L(p, yn, p1, p2) ≤ DMEW(p, yN ) ≤ U(p, yN , p1, p2) (22)

where p1 and p2 are defined as validation and confidence
probabilities. By using the available DME and with confi-
dence probability, p2, the estimate of mean and variance of
random variable WNME(p, Âp, Y

N ) can be provided. Then,
the one sample of this random variable, DMWE(p, yN ), is
probabilistically validated. In application, the provided worst

case bound U(p, yN , p1, p2) is used for comparison of mod-
els of different order. The choice of p1and p2 are up to the
user. The higher these probabilities are, the higher is our con-
fidence on the bounds and the farther are the bounds from
each other. Detailed calculation of these bounds using the
DME is identical to calculation of reconstruction error in a
new denoising approach which is presented in [1]. The cal-
culation is also similar to calculation of minimum description
complexity (MDC) for linear models, where MDC is a new
information theoretic approach for statistical system model-
ing and is provided in [2, 3].

In [2, 3], it is shown that the existing order selection meth-
ods of form (12) are special cases of closed forms of form
U(yN , p, p1, p2) with particular choices of the confidence and
validation probabilities. For example, AIC is the same as
U(yN , p, 0, 0) where p1 = p2 = 0. This explains the in-
consistency of AIC which results over-modeling in some ap-
plications, i.e., the reality that AIC usually chooses more pa-
rameters than the true p∗. The simulations in the following
section demonstrates the advantages of the DMEW approach
over AIC and MDL approaches.

5. SIMULATION

Consider an autoregressive (AR) process of order p∗ = 14
with the following coefficients1

a∗
p∗ = [−0.0791 − 0.1070 0.0790 − 0.9214 − 0.2228

0.0472 − 0.1920 0.1822 − 0.2144 0.0152
−0.0646 0.4186 0.1321 − 0.1142]

The goal is to use the available data of length N = 140 to
provide the all-pole estimate of this model. Three order se-
lection methods AIC, MDL, and the new DMEW criterion
are used to choose the optimum order from 1 ≤ p ≤ 30.
The covariance method is used for calculation of the coeffi-
cients for each p. Throughout these simulations, the confi-
dence and validation probabilities for DMEW approach are
both 0.99. Figure 3 shows the true power spectrum and the
results of different approaches. AIC estimate has 18 poles,
MDL estimate has 12 poles and both methods are in dotted-
dashed lines. The dashed line is the DMEW estimate. The
new method has chosen the correct order and has 14 poles.
The associated WNME error (18) of AIC, MDL and DMEW
estimates are .1, .056 and .03 respectively, which shows that
the error in the new approaches is whiter than the correspond-
ing error from the other two methods. Figure 4 provides an
interesting insight into the optimum order choice for different
data lengths. The results are shown for data length ranging
from 60 to 250. For any order selection method and a data
length N , the figure shows two quantities, the average and

1The filter that generates the data has the following poles
.7, .35, .7ej(.75π), .7ej(−.75π), −.6, .8, .98ej(2π), .98ej(−.2π),
.98ej(3π), .98ej(−.3π).
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Fig. 3. Solid line is the desired spectrum. Estimated spec-
trums are: Dotted-dashed lines (AIC and MDL) and dashed
line (DMEW). AIC and MDL’s optimum orders are 18 and 12
poles. DMEW chooses p = 14 which is the correct order.

variance of the optimum order for 300 trials. For example,
for N = 140, AIC chooses 14 poles on average. However,
AIC’s variance is very high and of order 3. DMEW’s aver-
age is also close to 14. However, the variance of this method
is smaller and around one. MDL’s average is 12 with vari-
ance of order one. As the figure shows, all methods choose
orders less than the true order for data legnth N less than 140.
However, as the data length grows, AIC with its large vari-
ance, tends to overmodel and both MDL and DMEW provide
the correct order since they are both consistent approaches.
Nevertheless, as the figure shows, compare to DMEW, MDL
tends to undermodel for the data length below 250.

6. CONCLUSION

We presented a new OSPSE approach. The new method fo-
cuses on calculation and optimization of a new criterion. In
this criterion, the data modeling error (DME), that has an im-
portant role in the existing PSE approaches, plays a critical
different role. While in the existing PSE approaches the goal
is to minimize the DME, the new approach uses the DME
to model the structure of the random process with the de-
sired parametric model. Consequently, it is the whiteness
of the DME, and not just its power, which plays an impor-
tant role in the new OSPSE approach. The desired crite-
rion is DME whiteness (DMEW) criterion which simultane-
ously selects the optimum order and the optimum parameters.
This method is very different from the existing order selec-
tion approaches that use one of the PSE approaches for pa-
rameter estimation and a different criterion to compare these
estimates for the order selection step. The approach shows
many advantages over the existing methods and explains oc-
casional under-modeling and over-modeling of important ex-
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Fig. 4. Estimated mean and variance of optimum p for data
length N between 60 and 250. AIC is the dashed line. MDL
is the solid line and DMEW is the solid line with ‘*’.

isting methods such as AIC and MDL. The consistent theory
of DMEW introduces a fundamentally new approach to the
OSPSE problem and the method promises to succeed in vari-
ous areas of practical applications.
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