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ABSTRACT
Line spectra estimation is addressed for irregularly sampled

astrophysical data. A formulation with a large number of dis-

cretized frequencies is used and sparseness is encouraged via

a Bernoulli-Gaussian (BG) model on the corresponding am-

plitudes. Contrary to classic BG models, here the frequency

parameters are not constrained on a fixed grid, theoretically

enabling unlimited frequency precision. We propose a poste-

rior mean unsupervised estimation scheme combined with an

hybrid MCMC algorithm, that allows us to derive crucial in-

formation in an astrophysical context, such as confidence lev-

els and variances for each detected spectral line. Simulations

confirm the validity of this model with satisfactory estimation

results, in addition to a more solid behaviour than parametric

methods towards classic astrophysical perturbations.

1. INTRODUCTION

The search for periodicities in astronomical time series has a

wide field of applications. In asteroseismology, the detection

of spectral lines from radial velocity or light curves allows us

to identify the pulsation modes of variable stars. It is also the

key tool for studying multiple systems and for indirectly de-

tecting exoplanets. Astronomical data generally suffer irreg-

ular sampling and additional periodic gaps may appear due to

the day/night and seasonal alternations causing the periodic

invisibility of the object. The Fourier spectrum is thus inef-

fective for detecting spectral lines, and sampling irregularities

render many classical methods unapplicable. Furthermore,

approximately one of two stars is part of a multiple system,

where the relatively slow orbital movement may cause low

frequency variations dominating the data and perturbating

the estimation of lines at higher frequencies, as shown in Fig. 1.

High resolution spectral analysis has recently been ad-

dressed as a linear inverse problem. A non parametric model

of data y = [y(t1), . . . y(tn)]T is used with an arbitrarily
large number of sinusoids with discretized frequencies on the

grid G = {fG
k }k=0...P

∆
= { k

P fmax}k=0...P :

MG : y(tn) =

P∑
k=0

ak cos 2πfG
k tn + bk sin 2πfG

k tn + εn.
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Fig. 1. Left: radial velocity curve of star HD 104237 for
five observing nights. Right: its Fourier spectrum. Several

spectral lines are expected around 33 day−1 but only one peak

is retrieved with its 1 day−1 sidelobes.

Line spectrum estimation is then addressed by reconstructing

a sparse vector of amplitudes through some regularization.
Such a formulation can be used for every sampling scheme

contrary to many parametric methods that require even sam-

pling. Although this model is not strictly adapted to low fre-

quency perturbations as shown in Fig. 1, it also revealed the

ability [1] to retrieve high frequency spectral lines from these

raw data where multi-sinusoidal models [2] cannot be fitted.

The first paper by Sacchi et al. [3] introduces the modelMG

via Tikhonov regularization by minimizing an adequately pe-

nalized least-squares criterion. A Bernoulli-Gaussian proba-

bilistic model on the spectral amplitudes has been proposed

by bayesian maximum a posteriori (MAP) estimation [4] that
showed satifactory results but also exhibited limitations due to

a necessary supervised and suboptimal optimization. An al-

ternative proposed by Cheng et al. [5] for Bernoulli-Gaussian
deconvolutionmakes use ofMarkovChainMonte-Carlometh-

ods (MCMC) to perform an unsupervised posteriormean (PM)

estimation. It was successfully adapted to the spectral analy-

sis problem for modelMG [1], where this strategy allows us

to derive essential information in terms of confidence levels

and variances associated to the detected spectral lines.

However, modelMG is intrinsically limited by the dis-

cretization constraint on a fixed frequency grid, and reducing
the grid step substantially increases the computational cost.

In [4] an extended BG model is proposed to improve the fre-

quency precision. The problem was addressed through MAP

estimation which provided only partial satisfaction due to the

increased complexity of the optimization problem. To our
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knowledge this extension has not been utilized since then, al-

though it enables the localization of the frequency parameters

(or the spike trains for BG deconvolution) on a continuous set.
In this paper, we propose a PM estimation scheme through an

hybrid MCMC algorithm for such a model.

2. MODEL DESCRIPTION AND ESTIMATION

2.1. An extended Bernoulli-Gaussian model

We consider the extension of modelMG where the frequen-

cies now belong to continuous spectral bands Ik = [fG
k−1, f

G
k ]:

Mdf : y(tn) =

P∑
k=0

ak cos 2πfktn + bk sin 2πfktn + εn

where f0 = 0 and ∀k ≥ 1, fk = fG
k − dfk, dfk ∈ [0,

fmax
P

].

Introducing sk = [ak, bk] and the 2P + 2 amplitude vector
s = [s0, . . . , sP ]T , modelMdf writes equivalently:

y = Hdfs + ε (1)

whereHdfn,2k
= cos 2π(fG

k −dfk)tn,Hdfn,2k+1
= sin 2π(fG

k −
dfk)tn and ε stands for perturbations such as additive noise

and model errors. Here ε is supposed centered, white and

gaussianwith varianceσ2
ε . Irregular samplingmakes the alias-

free frequency range much wider than with regular sampling

[6]: there is noNyquist limit and the maximum frequency fmax
of the model is set according to physical prior information.

As only a few lines are searched, we introduce the follow-

ing probabilistic model similarly to [4]:

• a white Bernoulli sequence q = [q0, . . . , qP ]T is de-
fined to control the sparsity of the solution: Pr(qk =
1) = λ is the prior probability of existence of a spectral
line in the spectral band Ik;

• the frequency shifts dfk, k=1...P are considered inde-

pendent and uniformly distributed in ∆f
∆
= [0, fmax

P ];

• conditionally to the localization by the Bernoulli vari-
ables, amplitudes (ak| qk = 1) and (bk| qk = 1) of the
spectral line in Ik are centered gaussian variables with

variance σ2: p(sk|qk) = g2(sk, qkσ2
I2), where gm

stands for them-variate centered gaussian distribution:

gm(x, Σ) =
1

(2π)N/2|Σ|1/2
e−

1
2 xT Σ−1x.

The case qk = 0 corresponds to an improper centered
gaussian distributionwith a zero covariancematrix, i.e.,
a Dirac distribution δ2(sk).

Independence between df and s in the above definition is

utilized for practical convenience. Obviously, the frequency

shifts dfk are only meaningful when qk = 1; this will be con-
sidered in the posterior estimation procedure.

The estimation of the unknown quantities q, s and df

inMdf is a quite more complex problem than simply estimat-

ing q, s inMG because of the non-linearity in new parame-

ters df . A MAP strategy was proposed [4] by a combinatorial

exploration algorithm similar to the classic suboptimal SMLR

procedure introduced in BG deconvolution [7]. To cope with

non-linearities, however, several approximation levels were

necessary (first-order linearization of modelMdf , gaussian

approximation of the unusable integral exponential distribu-

tion) that provided only partial satisfaction. We consider here

a PM estimation combined with a stochastic sampling algo-

rithm. Such a strategy enables the joint estimation of (q, s)
and df in a unified procedure while providing additional vari-

ance estimation on each parameter, which is essential infor-

mation not accessible by MAP estimation.

2.2. Unsupervised procedure

Fully unsupervised estimation can furthermore be addressed

by jointly sampling and estimating q, s, df and θ from the

posterior distribution p(q, s, df , θ|y) ∝ p(q, s, df |y, θ)p(θ).
With appropriate priors p(θ) on the hyperparameters, the glo-
bal computational cost of the sampling procedure is nearly

left unchanged. We consider a uniform prior on the Bernoulli

parameter λ and Jeffreys’ uninformative (improper) priors [8]
on the variances: p(σ2) ∝ σ−2, p(σ2

ε ) ∝ σ−2
ε . Such choices

do not require the adjustment of any additional parameter and

guarantee the integrability of p(q, s, df |y, θ)p(θ) w.r.t. θ,

which is necessary to sample properly from the joint distri-

bution p(q, s, df , θ|y) [8]. The latter writes by Bayes’ rule:

p(q, s, df , θ|y) ∝ p(y|q, s, θ) p(q, s, df |θ)p(θ)

∝ gN (y − Hdf s, σ2
ε IN )

×

P∏
k=0

(
λg2(sk, σ2

I2) + (1 − λ)δ2(sk)
)

×

P∏
k=1

1∆f (dfk) × σ−2σ−2
ε . (2)

2.3. Estimation strategy

Suppose that samples (q(u), s(u), df (u), θ(u))u=1...U are drawn

according to (2). We propose the following estimation scheme.

1. First, estimate the posterior mean of the Bernoulli se-

quence: q̂PM = 1
U

∑
u q(u) and of the hyperparameters:

θ̂PM = 1
U

∑
u θ

(u). Then, perform the detection step by
suitably thresholding q̂PM and build the corresponding

Bernoulli sequence q̂α: q̂αk
= 1 if q̂PMk

> α.

2. Estimate the conditional posteriormean of the frequency

shifts E[df |y, q = q̂α] and their variances. That is:

for k/q̂αk
= 1, d̂fk =

1

Uα

∑
u |q(u)= bqα

df
(u)
k

and var d̂fk �
1

Uα − 1

∑
u |q(u)= bqα

(df
(u)
k − d̂fk)

2

where Uα = Card{u | q(u) = q̂α}.
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3. Finally perform the PM estimation of the conditional

amplitudes E[s|q = q̂α, d̂f ] and their variances. Un-
der the gaussian assumptions on the priors p(s|q) and
the noise distribution, both quantities have explicit an-

alytical expressions as functions of y, q̂α, d̂f and θ̂PM.

Step 1 associates by means of q̂PMk
a posterior probability to

the possible detection of a spectral line in every band Ik and

threshold α corresponds to a minimum confidence level for
each detection. Complementary variance estimation in steps 2

and 3 also gives additional precision on the estimated param-

eters. This strategy appears similar to the estimation of mul-

tiple sinusoids proposed by [2] for a Poisson-Gaussian (PG)

prior using a reversible jump MCMC algorithm. The main

difference is in the detection step: in [2] a posterior probabil-

ity is assigned to the model order whereas in our approach a
probability is assigned independently to the possible detection

of a spectral line in each of the P spectral bands Ik. Simula-

tions in section 4 will show that our strategy also brings more

robustness towards modelling errors.

3. AN HYBRID ALGORITHM

We describe an MCMC algorithm to draw samples from the

joint posterior distribution (2). Note that the integration of

amplitude parameters s leads to an explicit marginal density.

Sampling from the marginal p(q, df , θ|y), however, is much
more burdensome than sampling from (2) and leads to a less

efficient procedure. Let p(x|–) denote the posterior condi-
tional distribution of random variable x where « – » repre-

sents all other random variables and the data y. The Gibbs

sampler is an appropriate algorithm for sampling the parame-

ters of modelMG as the conditional variables (qk, sk|–) fol-
low BG distributions [5] and p(θk|–) belong to classical dis-
tributions. While such properties still hold for (qk, sk) and θk

when extending to modelMdf , the conditional distributions

of the frequency shifts write:

p(dfk|–) ∝ exp

(
−
‖ek − Hdfksk‖

2

2σ2
ε

)
× 1∆f(dfk) (3)

whereHdfk is theN × 2 matrix formed by the 2k and 2k + 1
columns of matrixHdf and ek = y−

∑
� �=k Hdf�s�. As direct

sampling from (3) is not possible, we perform a Metropolis-

Hastings (MH) step with (3) as equilibrium distribution: at

iteration t, a candidate dfk is drawn according to a proposal

φ(dfk|df
(u−1)
k ) and accepted with probability:

ρ = min

{
1,

p(dfk |–)

p(df
(u−1)
k |–)

φ(df
(u−1)
k | dfk)

φ(dfk | df
(u−1)
k )

}
.

Following [2], we mix two proposal distributions: φ1(dfk) is
a uniform distribution on ∆f and φ2(dfk|df

(u−1)
k ) is a gaus-

sian random walk truncated to ∆f enabling a local explo-
ration of the posterior (3). Samples of φ2 are drawn by sim-

ulating the untruncated gaussian law until the sample belongs

to ∆f : this can be viewed as an acceptation-rejection proce-
dure [8] where a small variance of the random walk ensures a

high acceptation rate. Here the corresponding standard devi-

ation is set to 10% the size of∆f .
As proposals are symmetric, the expression of probability

ρ reduces to the posterior ratio. Algorithm is given in Tab. 1.

• For k = 0 . . . P : (i) sample (qk, sk) according to:

p(qk, sk|–) = λkg2(sk − µk,Rk) + (1 − λk)δ2(sk)

with λk =
eλk

eλk+(1−λ)
, λ̃k = λ

σ2 |Rk|
1/2eµT

k R
−1
k

µk ,

R
−1
k = I2

σ2 + 1
σ2

ε
Hdf

T
k Hdfk, µk = 1

σ2
ε
RkHdf

T
k ek.

(ii) if k ≥ 1, perform a MH step with invariant distribu-
tion p(dfk|–) given by (3): sample u ∼ U[0,1] and use

proposal φ1 if u < 1/2, else use proposal φ2.

• Sample the hyperparameters according to their condi-
tional posterior distributions:

(λ|–) ∼ Be(Mq + 1, P + 1 − Mq)

(σ2|–) ∼

{
IG(Mq + 1, ||s||2/2) if s0 = 0

IG(Mq + 1/2, ||s||2/2) else

(σ2
ε |–) ∼ IG(N/2 + 1, ||y − Hdfs||

2/2)

whereMq is the number of non zero components in the

sequence q, Be and IG stand for the beta and inverse-
gamma distributions, respectively.

Table 1. Hybrid MCMC algorithm forMdf .

This scheme generates the frequency shifts dfk conditionally

to the value of the amplitudes sk, whereas the inverse proce-

dure may appear more natural. Recall, however, that ampli-

tude sampling is introduced because jointly sampling

(qk, sk|–) is computationallymore efficient than sampling the
conditionals (qk|–) from the marginal distribution. The only
drawback to this approach is that the MH step may reject

too many candidates dfk if the fixed amplitude sk is not ap-

propriate, which would slow down the convergence of the

chain. With sufficiently small spectral bands Ik, however –

i.e., with P sufficiently large – one can expect the amplitude
that best models a spectral line in Ik to depend slightly on the

exact localization of the frequency in Ik. In practice, satisfac-

tory acceptation rates were obtained.

4. SIMULATION RESULTS

The signal shown in Fig. 2 is the sum of 5 sinusoids with

frequencies from 0.1 to 0.16 day−1 with 5 dB white gaussian

noise. The 250 points are unvenly sampled with additional pe-
riodic gaps and the Fourier spectrum is unreadable. Posterior

mean q̂PM shown in Fig. 3 was obtained after 5000 iterations

of algorithm in section 3, where the first 1000 samples were

discarded to remove initialization effects. A P = 100 point
grid was used with fmax = 0.25 day−1. The spectral lines are

localized in the correct spectral bands with the highest confi-

dence level: in this example q̂PM equals to 1 at the 5 correct
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Fig. 2. Left: irregularly sampled multi-sinusoidal signal.
Right: Fourier spectrum (–) and true lines (�).

locations while it takes small values elsewhere. Accurate es-

timations of the corresponding frequencies f̂i and amplitudes

are obtained. Due to lack of space, we focus above all on the

frequency estimation, which is the crucial point. In this ex-

ample the grid precision equals fmax/P = 2.5 × 10−3 day−1

whereas the mean frequency error is 1.16 × 10−4 day−1.
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Fig. 3. Left: estimate q̂PM. Right: posterior estimation for

each detected line. Errorbars correspond to standard devia-

tions, � to the true values. Bandwidth around each frequency
is fmax/2P (half the grid precision).

A comparison is given with the estimator – denoted PG –

proposed by [2] that also provides variance information on

each detected spectral line and can be adapted to irregular

sampling. In this case, however, the use of the Fourier spec-

trum to build a convenient proposal in the MH algorithm can

be critical; here a uniform proposal was used instead. Tab. 2

shows similar performances of both estimators and the mean

frequency error for PG is 1.27 × 10−4 day−1. However,

PG only provides a probability on the model order (in this

case 85% of the samples correspond to the correct order 5)

whereas modelMdf allows a more complete posterior inter-

pretation for every spectral band.

Mdf PG

| bfi − fi| std bfi bqPM | bfi − fi| std bfi

×10−4 d−1
×10−4 d−1

×10−4 d−1
×10−4 day−1

f1 0.4 1.2 1 0.4 1.5

f2 0.9 1.1 1 1.4 1.0

f3 0.7 0.8 1 0.6 0.8

f4 0.0 0.9 1 0.3 0.1

f5 3.8 1.8 1 3.7 1.8

Table 2. Estimation results compared to PG estimation [2].

We finally show that estimation provided by modelMdf

is robust when data present typical low-frequency perturba-

tions as in Fig. 1. A signal is simulated based on the same

sampling scheme and orbital movement as in Fig. 1 with four

spectral lines with frequencies between 28 and 25 day−1. No

satisfactory result was obtained by parametric approaches as

PG or astrophysical CLEAN deconvolution methods. Estima-
tion withMdf shown in Fig. 4 achieves a satisfactory estima-

tion: q̂PM is almost 1 at low frequencies but also at the loca-

tions of the four true lines, and the corresponding parameters

are correctly estimated. In this example, the mean frequency

error is 6×10−3 day−1. Note that a thinner grid (P=500) was

used to account for the low-frequency continuous spectrum

by a sufficient number of frequency components. A higher

number of iterations was also necessary, resulting in a con-

siderable increase of the computational burden.
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Fig. 4. Results on a low-frequency perturbated signal. Left:
estimate q̂PM. Right: posterior estimation for each detected

line. Errorbars correspond to standard deviations, � to the
true values. Bandwidth around each frequency is half the grid

precision, i.e., fmax/2P = 0.04 day−1.
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