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ABSTRACT
We propose a method for the minimax design of 2-D FIR filters

based on a parameterization of multivariate trigonometric polyno-
mials that are positive on a given frequency domain. The parame-

terization uses sum-of-squares polynomials and so semidefinite pro-

gramming (SDP) is applicable. The frequency domain is expressed

via the positivity of some trigonometric polynomials. The degree
of sum-of-square polynomials must be bounded and so the method

is in principle suboptimal, but the 2-D FIR filter designs we study

numerically suggest that near-optimal results are obtained.

1. INTRODUCTION

Minimax design of 2-D FIR filters is a problem more than 30 years

old for which several optimization methods have been proposed.

Among them we can cite linear programming [1], multiple exchange

[2], iterative weighted least squares [3]. All these methods work on a
frequency grid and so they give suboptimal results on the actual pass-

band or stopband, which are compact frequency domains. This paper

presents a method based on a new characterization of trigonometric

polynomials that are positive on a frequency domain. The method
is practically optimal. The only drawback is that the frequency do-

mains (stopband, passband) cannot have arbitrary shape, but have to

be defined by the positivity of some trigonometric polynomials.

In the 1-D case, a parameterization of trigonometric polynomials
that are positive on an interval [α, β] ⊂ [0, π] was given recently

in [4], in the form of a linear matrix inequality (LMI). Here, we

give a generalization of this result to multivariate polynomials, on

frequency domains that are not only cartesian products of intervals
(rectangles, in 2-D), but have more general shape.

An overview of the paper is the following. In section 2, mul-

tivariate trigonometric polynomials are described and some of their

properties are discussed. Section 3 contains the basic result of this

paper, namely the parameterization of positive multivariate trigono-
metric polynomials, in terms of sum-of-squares, and its LMI form.

In section 4, we give examples of the 2-D domains that can be used

with the parameterization. Sections 5 and 6 describe the algorithm

and examples of minimax design of linear phase 2-D FIR filters. Al-
though the method can be implemented only in suboptimal form, due

to the necessity of bounding polynomial degrees (that theoretically

can be arbitrarily high), the designs appear to be very near the opti-

mum. The notations are fairly standard; in particular, bold letters de-
note multidimensional entities, e.g. ω = (ω1, . . . , ωd) ∈ [−π, π]d.
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2. TRIGONOMETRIC POLYNOMIALS

We denote z = (z1, . . . , zd) the d-dimensional complex variable

and zk = zk1
1 . . . z

kd
d a d-variate monomial of degree k ∈ Z

d. A

symmetric d-variate polynomial of degree n ∈ N
d is

R(z) =
n∑

k=−n

rkz−k , r−k = r∗k . (1)

On the unit d-circle T
d = {z ∈ C

d | |zi| = 1, i = 1 : d}, with

zk = exp (jkT ω), the polynomial (1) has real values. A symmetric
polynomial R(z) with complex coefficients can be written as

R(z) = Re(z) + jRo(z),

where the even part Re(z) and the odd part Ro(z) have real co-

efficients. Symmetric polynomials with real coefficients are named

even and denoted with upper index e; note that Re(z−1) = Re(z).

Any trigonometric polynomial that is positive on the unit d-

circle (we name it globally positive) can be written as a sum-of-
squares (a proof is e.g. in [5]), namely

R(z) =
∑µ

�=1 F�(z)F ∗
� (z−1), (2)

where the polynomials F�(z) contain only monomials with nonneg-

ative degree and F ∗
� is the polynomial with complex conjugated co-

efficients. On T
d, this equality becomes

R(ejω )
∆
= R(ω) =

∑µ
�=1 |F�(ω)|2.

Theoretically, the degrees of the polynomials F�(z) from (2) can be

arbitrarily high. Sum-of-squares trigonometric polynomials can be
parameterized in terms of positive semidefinite matrices as follows

[6, 7]. The polynomial (1) is sum-of-squares if and only if there

exists a matrix Q � 0, called Gram matrix associated with R(z),

such that

rk = trace[T k · Q], T k = T kd
⊗ . . . ⊗ T k1 (3)

where T ki are elementary Toeplitz matrices with ones on the ki-th

diagonal and zeros elsewhere (⊗ denotes the Kronecker product).
In a practical implementation, we have to bound deg F� to m ∈

N
d, with m ≥ n. This condition amounts to taking the matrices

T ki of size (mi +1)× (mi +1). Then, the size of the Gram matrix

Q is M × M , with M =
∏d

i=1(mi + 1). If the polynomial (1) has
complex coefficients, then the matrix Q is complex (and Hermitian);

if the polynomial has real coefficients, then Q is real (and symmet-

ric). The parameterization (3) allows the use of SDP in optimization

problems involving globally positive trigonometric polynomials, as
e.g. in [7, 8].

III ­ 5121­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006



3. CHARACTERIZATION OF TRIGONOMETRIC
POLYNOMIALS POSITIVE ON FREQUENCY DOMAINS

In this section, we present our main contribution, namely the pa-

rameterization of trigonometric polynomials that are positive on fre-
quency domains of the form

D = {ω ∈ [−π, π]d | Di(ω) ≥ 0, i = 1 : ν}, (4)

where Di(z) are given trigonometric polynomials.

Theorem 1 If a polynomial R(z) defined as in (1) is positive on the
nonempty set D defined in (4) (i.e. R(ω) > 0, ∀ω ∈ D), then there
exist sum-of-squares polynomials Si(z), i = 0 : ν, such that

R(z) = S0(z) +
ν∑

i=1

Di(z) · Si(z). (5)

Moreover, if R(z) and the polynomials defining D are even, then the
above sum-of-squares polynomials are also even, i.e. we can write

Re(z) = Se
0(z) +

ν∑
i=1

De
i (z) · Se

i (z). (6)

The proof is based on results on real polynomials positive on

semialgebraic sets [9] and is too long to be presented here.

The reciprocal of Theorem 1 holds in the sense that if the forms

(5) or (6) exist, then R(ω) ≥ 0, ∀ω ∈ D; the proof is trivial. So,
some of the polynomials that are nonnegative on D have the form

(5) or (6), but not all of them.

Theoretically, the degrees of the sum-of-squares polynomials

from (5) or (6) can be arbitrarily high. In a practical implementa-
tion, for complexity reasons, the degrees must be taken as small as

possible. Thus, we use the degrees values

deg S0 = n + e,
deg Si = n + e − deg Di, i = 1 : ν,

(7)

where e has small nonnegative elements (preferably e = 0). In

principle, a larger e allows a better approximation by (5) of the set of

polynomials (of degree n) that are positive on D; however, a larger

e means a higher complexity of implementation. With the degree
limitation (7), the relation (5) becomes only a sufficient positivity

condition. We will see in the experimental section that the impact of

this bounded degree in the design applications seems negligible.

Using the Gram matrix parameterization (3) of sum-of-squares
polynomials, the relation (5) takes the form of an LMI.

Theorem 2 If the symmetric polynomial R(z) is positive on the do-
main D defined as in (4), then there exist matrices Qi � 0 such
that

rk = trace

[
T kQ0 +

ν∑
i=1

ΨikQi

]
, (8)

where
Ψik =

∑
�+m=k

(di)�T m . (9)

Proof. The matrices Qi are Gram matrices associated with the
sum-of-squares Si(z) and so obey to relations similar to (3). The

form (9) results immediately by looking at the coefficient of z−k of

each product Di(z)Si(z) from (5).

The reciprocal of Theorem 2 holds in the sense that if the matri-
ces Qi � 0, i = 0 : ν, exist such that (8) holds, then R(ω) ≥ 0,
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Fig. 1. Left: borders of the domains defined by (11), for c = −1.5 :
0.3 : 1.5 (from exterior to interior). Right: borders of the domains

defined by (12), for c = −1.5 : 0.5 : 2.5

∀ω ∈ D. (Note that, similarly to the reciprocal of Theorem 1, the
strict positivity is replaced by nonnegativity.) The proof is immedi-

ate, since (8) is equivalent to (5).

The degree choice (7) imposes the sizes of the Gram matrices

Qi. If the polynomials R(z) and Di(z) are even (have real coef-
ficients), then the Gram matrices Qi are real. Otherwise, the Gram

matrices are complex.

4. FREQUENCY DOMAINS DEFINED BY POSITIVITY OF
TRIGONOMETRIC POLYNOMIALS

Usually, the passbands or stopbands of 2-D filters are delimited by
simple curves, e.g. circle, ellipse, rhombus (”diamond”), described

by low-degree polynomials in ω. Here, we explore what shapes can

have frequency domains D defined by trigonometric polynomials, as

in (4). We present few basic domains, defined by even trigonometric
polynomials. The intersection of several domains is intrinsic to the

definition (4); the resulting domain is defined by all the polynomials

defining the initial domains. The union of domains is also an allowed

operation; since positivity on a domain is described by an LMI, as
stated by Theorem 2, it follows that positivity on a union of domains

is described by several LMIs, one for each domain.

Rectangles. A rectangle in [−π, π]2, whose sides are parallel to

the axis, is defined by

De
1(ω) = cos ω1 − c1 ≥ 0, De

2(ω) = cos ω2 − c2 ≥ 0. (10)

Its complementary is the union of the domains defined by −De
1(ω) ≥

0 and −De
2(ω) ≥ 0, respectively. (The de Morgan rules can be gen-

erally applied when working with the complementary of a domain.)

Low band. Another shape suited to describe low frequency bands

is defined by

De
1(ω) = cos ω1 + cos ω2 − c ≥ 0. (11)

The curves defined by De
1(ω) = 0, representing the borders of the

domain defined by (11), are drawn on the left of Figure 1, for several
values of the parameter c. For values of c near 2, the shape is almost

circular, while for c near 0, it is almost a diamond.

Fan. Shapes suited to fan filters are defined by e.g.

De
1(ω) = 2 cos ω1 − cos ω2 − c ≥ 0 (12)

and illustrated on the right of Figure 1, where dashed lines corre-

spond to c < 1 and solid lines to c ≥ 1. It is clear that the coefficient
of cos ω1 affects the width of the fan on the ω1 direction.
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Diamond. The periodicity of trigonometric polynomials should

be taken into account. A diamond shape can be obtained with

De
1(ω) = cos(ω1 + ω2) − c ≥ 0,

De
2(ω) = cos(ω1 − ω2) − c ≥ 0,

De
3(ω) = cos ω1 + cos ω2 ≥ 0.

(13)

Since ω1 ± ω2 ∈ [−2π, 2π], the first two polynomials from (13)

define not only the desired diamond, but also four triangles in the

corners of [−π, π]2. The third polynomial from (13) (which has the
form (11)) has the purpose of removing these high frequency areas.

5. DESIGN OF LINEAR PHASE FIR FILTERS

We consider here symmetric FIR filters of odd degree, i.e. the sim-
plest (and most common) case of linear phase filters. With no loss

of generality, we consider the real coefficients zero-phase filter

He(z) =
n∑

k=−n

hkz−k , h−k = hk , (14)

which is an even trigonometric polynomial.

The traditional design specifications consist of a passband Dp,

on which the frequency response He(ω) is ideally equal to 1, a stop-

band Ds on which ideally He(ω) = 0 and a transition band Dt on
which there is no requirement on He(ω). A possible formulation

of minimax optimization is to minimize the stopband attenuation γs

while keeping the passband error below a preset value γp. Addi-

tionally, we can bound the peak of the frequency response on the
transition band. The resulting optimization problem is

min
γs,He

γs

subject to |He(ω)| ≤ γs, ∀ω ∈ Ds

He(ω) − 1 ≤ γp, ∀ω ∈ Dp ∪ Dt

1 − He(ω) ≤ γp, ∀ω ∈ Dp

(15)

Furthermore, since the condition He(ω) − 1 ≤ γp is always satis-

fied in the stopband, we obtain the same solution in (15) by imposing

the second constraint on the whole frequency domain [−π, π]2 =
Dp ∪Dt ∪Ds; thus, the implementation is less complex: a globally

positive polynomial is characterized by a single Gram matrix, while

a polynomial that is positive on a given frequency domain is param-

eterized by several Gram matrices. Thus, (15) is transformed into an
optimization problem with nonnegative polynomials, namely

min
γs,He

γs

s.t. Re
1(ω) = He(ω) − γs ≥ 0, ∀ω ∈ Ds

Re
2(ω) = γs − He(ω) ≥ 0, ∀ω ∈ Ds

Re
3(ω) = γp + 1 − He(ω) ≥ 0, ∀ω

Re
4(ω) = He(ω) − 1 + γp ≥ 0, ∀ω ∈ Dp

(16)

We approximate (16), in the sense given by the comments following
Theorem 2, by using the parameterization (8) for each of the four

positive polynomials from (16). An SDP problem is obtained.

6. 2-D FIR FILTER DESIGN EXAMPLES

We present in this section two examples of minimax design of 2-

D FIR filters with real coefficients. These designs should be seen

chiefly as benchmarks for the theoretical results, rather than recom-

mendations for practice. In general, it is better to combine minimax
and least-squares criteria in the design of FIR filters; our method
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Fig. 2. Passbands (black) and stopbands (gray) for 2-D filter design.

e 0 (1,1) (2,2) (3,3)

Example 1 0.012496 0.012303 0.012297 0.012297
Example 2 0.020837 0.020837 0.020837 -

Table 1. Optimal values of γs.

can be easily adapted to such an approach. All programs have been

written in Matlab, using the SDP library SeDuMi [10], and run on a
Pentium IV PC at 1GHz.

In Figure 2 we present the passband (in black) and stopband (in

gray) for our examples: a lowpass and a fan linear phase FIR filters.

The filters are designed by solving the SDP form of the problem
(16), with some amendments mentioned below. The passband error

is γp = 0.05 for the first example and γp = 0.1 for the second.

The size of the filters is 15 × 15, i.e. n = (7, 7) in (14); the degree

correction e from (7) is zero, if not otherwise mentioned.
Example 1. The passband and the stopband are defined as in

(11), by

Dp1 = {ω1, ω2 ∈ [−π, π] | cos ω1 + cos ω2 − 1 ≥ 0},
Ds1 = {ω1, ω2 ∈ [−π, π] | − cos ω1 − cos ω2 + 0.3 ≥ 0}.

This is the simplest possible case, as each band is described by a
single polynomial. The frequency response of the filter is shown in

Figure 3. The design time is about 40 seconds. The optimal value of

the stopband error reported by the SDP program is γs = 0.012496.

To check the effect of the degree bound (7), we consider nonzero
values of the correction e, for which we rerun the SDP program.

(When e.g. e = (2, 2), we solve (16) with n = (9, 9), but force to

zero all filter coefficients corresponding to monomials zk1
1 zk2

2 with

either |k1| > 7 or |k2| > 7.) The optimal values of the stopband er-

ror γs are shown in Table 1. We see that taking e = (1, 1) improves
the error to γs = 0.012303, but further increase of the degree has

almost no effect. The frequency response obtained with e = (1, 1)
is given in Figure 4; the equiripple character is more evident than

in Figure 3, where there are some small irregularities in the high
frequency area. We note from Table 1 that, for the other example,

the best γs is obtained already for e = 0. The presented numerical

evidence (and other examples, not reported here) suggests that the

approximation made by imposing the degree bounds (7) has small
effect on the design even with e = 0; we conjecture that for all

practical purposes we can safely take e ≤ (1, 1).

Example 2. This is a fan filter, with passband and the stopband

defined by

Dp2 = {ω1,2 | 2 cos ω1 − cos ω2 − 1 ≥ 0, cos ω2 ≥ 0},
Ds2 = {ω1,2 | − 2 cos ω1 + cos ω2 ≥ 0}

∪{ω1,2 | − cos ω2 − 0.7 ≥ 0}.
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Fig. 3. Magnitude response of the filter from Example 1, with e = 0.

Fig. 4. Magnitude response of the filter from Example 1, with e = 1.

Now, the passband is defined by the positivity of two polynomials;

this will increase the complexity of the SDP problem since there are
more parameter matrices in (8). Also, the stopband is a union of

two domains and so we have to modify (16) by imposing the first

two constraints for each domain in the union; this will also increase

the complexity. Indeed, the design time is about 60 seconds, greater
than for Example 1. The optimal stopband error is γs = 0.020837.

Comparison with linear programming method. LetG ∈ [−π, π]2

be a discrete set of frequency points, typically a grid. We approxi-

mate the design problem (16) by its discretized version, by imposing

the positivity conditions not on compact frequency domains, but on
their intersection with G. For a given frequency point ω, each con-

straint is linear in the coefficients of He(z). Thus, a linear program-

ming (LP) problem is obtained. We build G as a union of two sets of

points. The first is a regular grid, with step π/L, covering the half

plane [−π, π] × [0, π]. The second set consist of 2L points on each
of the borders of Dp and Ds; these points are necessary if we want

to avoid the larger errors that typically appear near the borders.

We have solved the resulting LP program using SeDuMi, for

several values of L. Some experimental results are given in Table 2.

The first column shows the method. The second column shows the
value γs as reported by the program. We compute the actual errors

Method γs γs γp execution

reported on fine grid on fine grid time (sec)

LP, L = 20 0.011332 0.013389 0.055416 20

LP, L = 30 0.011431 0.012893 0.053954 70
LP, L = 40 0.012019 0.013043 0.050714 135

LP, L = 50 0.012057 0.012565 0.050732 200

SDP, e = 0 0.012496 0.012489 0.0499995 40

SDP, e = 1 0.012303 0.012301 0.0499990 85

Table 2. Comparison of the SDP and LP methods, for Example 1.

in the stopband and the passband on a fine grid with step π/200; the

largest errors are reported in the third and fourth columns, respec-

tively. For the LP method, the actual errors are larger than the ones

imposed on the grid G, a typical phenomenon. For our method, the
actual errors are practically equal to the imposed ones, which sug-

gests that the imposed bounds are tight. Moreover, for comparable

execution times, our method designs filters with better performance

than those obtained with the LP method.
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