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ABSTRACT

Accurate estimation of sinusoidal frequencies from noisy
observations is an important problem in many applica-
tions including radar, sonar, and data communications.
Among many algorithms is the iterative filtering algo-
rithm (IFA), proposed by Kay, which provides a compu-
tationally simple procedure yet capable of accurate fre-
quency estimation especially at low signal-to-noise ra-
tio (SNR). However, the convergence and other numeri-
cal/statistical properties of IFA have not been established
beyond simulation. This paper makes several important
contributions: (a) It shows that the poles of the AR filter
must be reduced via a shrinkage parameter to accommo-
date possibly poor initial values. (b) It shows that the AR
estimates in each iteration must be bias-corrected to pro-
duce more accurate frequency estimates; a closed-form
expression is provided for bias correction. (c) It shows
that for a sufficiently large sample size, the resulting al-
gorithm, called new IFA, or NIFA, converges to the de-
sired fixed-point which constitutes a consistent frequency
estimator. Numerical examples, including a radar data
example, are provided to demonstrate the findings.

1. INTRODUCTION

Consider the problem of estimating the frequencies, {ωk},
of multiple complex sinusoids from

yt := xt + εt , xt :=
p

∑
k=1

βke
i(ωkt+φk) (t = 1, . . . ,n), (1)

where p ≥ 1 is a known integer, βk > 0, ωk := 2π fk ∈
(−π,π)\{0}, and φk ∈ (−π,π] are unknown constants,
and {εt} is a zero-mean white noise process with un-
known variance σ2. The iterative filtering algorithm (IFA)
proposed by Kay [1] is based on the fact that {xt} is a
special autoregressive (AR) process of order p satisfy-
ing xt +∑p

k=1 akxt−k = 0, where the ak have a one-to-one

relationship with the ωk such that

1+
p

∑
k=1

akz
−k =

p

∏
k=1

(1− eiωk z−1). (2)

So the frequency estimation problem can be reformulated
as the problem of estimating a := [a1, . . . ,ap]

T . To es-
timate the AR parameter a, IFA iterates a cycle of es-
timation and filtering: It starts with an initial estimate
â := [â1, . . . , âp]

T obtained from {yt} and uses it to con-
struct an AR filter which is applied to {yt} to produce

ỹt = −
p

∑
k=1

âkỹt−k + yt (t = 1, . . . ,n), (3)

where ỹ−p+1 = · · ·= ỹ0 = 0. Then it re-estimates the AR
parameter from the filtered time series {ỹt} and uses the
new estimate to filter the original data {yt} in the same
way as (3) to produce a new filtered time series. This
cycle is repeated until a stopping criterion is satisfied.
IFA is simple computationally yet capable of providing
accurate estimates. But, the convergence of IFA has not
been established beyond simulation and a special case.

It is well known that the Gaussian maximum likeli-
hood method (a.k.a. nonlinear least squares) produces a
statistically efficient estimator but suffers from the prob-
lem of numerous local extrema so that an initial value
of precision O(n−1) is usually required in order for stan-
dard optimization algorithms to converge to the desired
solution [2]–[4]. IFA suffers from the same initial value
problem, as shown in Fig. 1.

In this paper, we provide a statistical analysis of IFA
in the case of p = 2 and make several contributions:

(a) It is shown that the poles of the AR filter must be
reduced via an extra shrinkage parameter in order
to accommodate poor initial values and avoid be-
ing trapped into spurious solutions.

(b) It is shown that the AR estimates in each iteration
must be bias-corrected in order to produce more
accurate frequency estimates; a closed-form ex-
pression is derived for bias correction.
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Fig. 1. Trajectory of the IFA estimates for two complex si-
nusoids in Gaussian white noise (n = 100 and SNR = 0 dB).
Dashed lines indicate the location of the true frequencies ( f1 =
0.2 and f2 = 0.23); dotted diagonal line shows the boundary
f1 = f2. Open circles represent initial values; solid points rep-
resent final estimates after 15 iterations; intermediate estimates
appear as lines that link open circles with solids points.

(c) It is shown that with probability tending to unity
as the sample size grows, the resulting algorithm,
which we call the new IFA, or NIFA, converges to
the desired fixed-point which constitutes a consis-
tent frequency estimator.

These results can be regarded as an extension of the ear-
lier work such as [5]. It is also worth pointing out that
by cascading the AR fitting with the AR filtering a notch
filter can be obtained. It can be implemented as an adap-
tive filter for tracking time-varying frequencies. The re-
sults in this paper remain valid for the steady-state per-
formance of the notch filtering algorithm.

2. THE NEW ITERATIVE FILTERING
ALGORITHM (NIFA)

Let us assume in the remainder of the paper that {yt} is
given by (1) with p = 2 and ω1 < ω2. Under this assump-
tion, it follows from (2) that a = [a1,a2]

T and

a1 := −(
eiω1 + eiω2

)
, a2 := ei(ω1+ω2). (4)

For any admissible variable ααα := [α1,α2]
T , which will be

defined later, let {yt(ααα)} denote the filtered time series

yt(ααα) = −
2

∑
k=1

αkηkyt−k(ααα)+ yt (t = 1, . . . ,n) (5)

with y−1(ααα) := y0(ααα) := 0, where η ∈ (0,1) is the shrink-
age parameter that contracts the poles of the filter towards
the origin and thus stabilizes the filter.

Given {yt(ααα)}, we estimate a by the method of least
squares (LS), i.e., by seeking â(ααα) that minimizes ‖y(ααα)
+Y(ααα)Dâ(ααα)‖2, where

Y(ααα) :=

⎡
⎢⎣

y2(ααα) y1(ααα)
...

...
yn−1(ααα) yn−2(ααα)

⎤
⎥⎦ ,

y(ααα) :=

⎡
⎢⎣

y3(ααα)
...

yn(ααα)

⎤
⎥⎦ , D := diag(η ,η2).

This gives rise to an AR estimator

â(ααα) := −D−1{YH(ααα)Y(ααα)}−1YH(ααα)y(ααα), (6)

where superscript H stands for Hermitian transpose. Note
that the role of D is to compensate for η .

Unlike the true AR parameter a, the AR estimator
â(ααα) does not necessarily correspond to a polynomial of
the form (2) which has unit roots. To impose this con-
straint on each root of the polynomial of â(ααα), one can
simply reset its modulus to unity while retaining its an-
gle, thus projecting it on the unit circle. The resulting AR
estimator is denoted by ψψψ(â(ααα)), where ψψψ(·) represents
the unit-root (UR) projector. The UR projection not only
stabilizes the AR filter but also eliminates the redundancy
in the AR reparameterization.

With the AR estimator ψψψ(â(ααα)) so defined, one seeks
a fixed point of the mapping ααα �→ ψψψ(â(ααα)) by the so-
called fixed-point iteration

αααm = ψψψ(â(αααm−1)) (m = 1,2, . . .). (7)

The IFA in [1] can be regarded as a special case of (7)
with η = 1, although, strictly speaking, it employs Burg’s
estimator rather than the LS estimator and it does not im-
pose the UR constraint. Fig. 1 shows that with η = 1 the
iteration in (7) may converge to spurious fixed points if
the initial values are not near the desired solution. This
problem can be overcome by choosing η < 1.

A careful analysis shows that in the case of η < 1 the
mapping â(ααα) contains a bias term at ααα = a that can be
expressed as b := [b1,b2]

T where

bk :=
(1−η)ik(eiω2 − eiω1)k sin2−k(ω2 −ω1)

ηk{1− cos(ω2 −ω1)}
(k = 1,2). (8)

By subtracting the bias from â(ααα), a new mapping ααα �→
ψψψ(â(ααα)− b) is formed. But the corresponding fixed-
point iteration is not yet practical because the bias b given
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Fig. 2. Trajectory of the NIFA estimates for the same data as used in Fig. 1. Left, η = 0.92; right, η = 0.96.

by (8) depends on the true frequencies. One way to make
it practical is to estimate the bias in each iteration using
the estimate of a from the previous iteration. This gives
rise to our NIFA algorithm

αααm := ψψψ(â(αααm−1)−b(αααm−1)) (m = 1,2, . . .), (9)

where b(ααα) := [b1(ααα),b2(ααα)]T is defined in the same
way as b by (8) except that ω1 and ω2 are replaced by λ1

and λ2 which are the angles of the roots of 1+ α1z−1 +
α2z−2 satisfying λ1 ≤ λ2. Let â := [â1, â2]

T be the limit-
ing value of {αααm} in (9) as m→ ∞. Then, the final NIFA
frequency estimator is given by ω̂ωω := [ω̂1, ω̂2]

T , where
ω̂1 = 2π f̂1 and ω̂2 = 2π f̂2 are defined as the angles of
the roots of 1+ â1z−1 + â2z−2 satisfying ω̂1 ≤ ω̂2. Simi-
larly, one can define the intermediate frequency estimates
ω̂ωωm in terms of αααm. By definition, ω̂ωωm → ω̂ωω as m → ∞.

3. CONVERGENCE AND ACCURACY

Eq. (4) defines a one-to-one mapping from ωωω := [ω1,ω2]
T

to a = [a1,a2]
T which will be denoted by ωωω �→φφφ(ωωω) := a.

Let Λ denote the set of λλλ := [λ1,λ2]
T with −π < λ1 <

λ2 ≤ π and let A denote the set of ααα := [α1,α2]
T such

that ααα = φφφ(λλλ ) for some λλλ ∈ Λ, i.e., A := φφφ(Λ). Let
Aδ denote a closed subset of A such that Aδ := {ααα ∈
A: ‖ααα −a‖ ≤ κδ ε}, where κ > 0 and ε ∈ (1, 3

2 ) are con-
stants and δ := 1− η ∈ (0,1) depends on n such that
δ → 0 as n → ∞.

Theorem. [6] Let Aδ be the neighborhood of a defined
above and assume that n(1− δ )n = O(1) and nδ ε → ∞
as n → ∞. Then, the following assertions are true.

(a) With probability tending to unity, the mappingααα �→
ψψψ(â(ααα)−b(ααα)) is contractive in Aδ , with a con-
traction factor of the form OP(δ ε−1), and therefore
has a unique fixed point â∈Aδ . Furthermore, with
probability tending to unity, the sequence {αααm}
defined by (9) converges to â as m → ∞ for any
initial value ααα0 ∈ Aδ .

(b) Let ω̂ωω be the frequency estimator corresponding
to â, i.e., ω̂ωω := φφφ−1(â). Then, for any constant
β ≤ 3/2 such that n−1δ−β = O(1) as n → ∞, ω̂ωω
is at least δ−β -consistent for estimating ωωω , i.e.,
δ−β (ω̂ωω −ωωω) = OP(1).

As an example, assume that δ = 1−η = O(n−ν) for
some 0 < ν < ε−1 < 1, then nδ ε = O(n1−νε)→∞, so the
conditions in the Theorem are satisfied. The resulting ω̂ωω
is at least nνβ -consistent for any β ≤ min(ν−1,3/2), as
it satisfies n−1δ−β = O(n−1+νβ ) = O(1). The required
accuracy of initial values is O(n−νε).

In particular, if ν = 2/3 and β = ν−1 = 3/2, the The-
orem ensures that ω̂ωω is at least n-consistent. By setting
ε = 1+, the initial requirement becomes nearly O(n−2/3).
This means that it suffices to use a slightly better than
n2/3-consistent estimator as the initial value to obtain the
n-consistent final estimator ω̂ωω . Such initial values can be
produced by NIFA itself, with the choice of ν = (4/9)+.
Indeed, with this choice, the Theorem guarantees a better
than n2/3 rate of consistency by taking β = 3/2 so that
νβ = (2/3)+. To obtain this estimator, the initial values
are required to be slightly more accurate than O(n−4/9),
which can be satisfied by all

√
n-consistent estimators.
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Fig. 3. Reciprocal MSE of the NIFA estimator for f1. Lines
without circle represent the CRLB under the assumption of
complex Gaussian white noise. Results are based on 1,000
Monte Carlo runs. The true frequencies are f1 = 0.2 and f2 =
0.23 (the phases are φ1 = 0 and φ2 = π/2). The simulated noise
is complex Gaussian.

In summary, by applying NIFA twice, once with a
smaller η and once with a large η , one is able to improve
the accuracy of the frequency estimator from O(n−4/9) to
O(n−1) or better. The convergence of NIFA in both cases
are guaranteed by the Theorem.

4. EXAMPLE AND APPLICATION

Fig. 2 shows the trajectory of {ω̂ωωm} with η = 0.92 and
η = 0.96 for the same data as used in Fig. 1. As can be
seen, the spurious fixed points in Fig. 1 no longer exist in
Fig. 2 where all initial values lead to a single fixed point
even if they are far away from the true frequencies. This
implies that the initial requirement of NIFA, with η <
1, is much less stringent than that of IFA where η = 1.
Generally speaking, η should not be made too close to
unity to avoid spurious fixed points, which is consistent
with the theoretical findings. A data-driven method of
selecting appropriate η is proposed in [6].

The shrinkage parameter η plays a vital role not only
in determining the requirement of initial values, but also
in determining the accuracy of the final estimator. Fig. 2
shows that the fixed point of NIFA with the larger η =
0.96 is much closer to the true frequencies than that with
the smaller η = 0.92 where the estimates are pushed to-
wards a single value in the vicinity of 1

2 ( f1 + f2). These
observations further justify the approach with multiple
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Fig. 4. Time-Doppler image and NIFA frequency estimates
(dark lines). Horizontal: time; vertical: Doppler.

values of η discussed in the previous section.
Fig. 3 shows the mean-square error (MSE) of f̂1 and

the corresponding CRLB for various sample sizes and
SNRs. Two values of η are used for each sample size
and Prony’s estimator is used as the initial value.

Fig. 4 shows the result of estimating the Doppler fre-
quency of a target. The data is taken from the 10th range
bin of the Sea Clutter + Target Data File #283 of radar
measurements collected with the McMaster IPIX Radar
overlooking the Atlantic Ocean from a cliff-top in Dart-
mouth, Nova Scotia, Canada (http://soma.ece.mcmaster.
ca/ipix). The target is a spherical block of styrofoam
wrapped with wire mesh.
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