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ABSTRACT

Thresholding the cepstrum associated with the periodogram is
a smoothing technique that appears to be very useful for vari-
ance reduction. Here the thresholding is performed via the
methods SThresh and EbayesThresh. They both work fine in
the broadband spectra case, even if some of the data is miss-
ing. The SThresh method appears to be more efficient as it
shows a smaller variance and is faster computationally. The
smoothing methods are also shown to perform well on a real-
life broadband signal.

1. INTRODUCTION

Consider an observed sample {yt}
N−1

t=0
of a stationary, dis-

crete-time, real-valued signal with power spectral density, or
spectrum, Φ(ω) (ω ∈ (−π, π]). For notational simplicity, let
{Φp} denote the values of the spectrum at the Fourier fre-
quency grid points:

ωp =
2π

N
p p = 0, ..., N − 1. (1)

The periodogram estimate of Φp is given by (see, e.g., [1]
[2]):

Φ̂p =
1

N

∣∣∣∣∣
N−1∑
t=0

y(t)e−iωpt

∣∣∣∣∣
2

p = 0, ..., N − 1. (2)

The high variance of the periodogram, which does not
converge to zero as N increases, but to Φ2

p, has resulted in
many forms of smoothing techniques to overcome this prob-
lem. These techniques mostly demand that the selection of
the window and its span is performed with prudence and for
this there are no clear guidelines.

Two recent papers, [3] and [4], have proposed the use of
cepstrum as point of departure for a new smoothing tech-
nique for nonparametric spectral estimators. Cepstrum has
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been used before in spectral estimation, but in parametric es-
timation of ARMA-parameters (see, e.g., [5] [6] [7]).

The cepstrum was first introduced in [8] and is used not
only in spectral estimation, but also in a wide variety of ap-
plications: speech processing, filter design, image processing,
geology and much more. See [9] [10] for rather extensive lists
of papers on cepstrum and its applications.

The cepstrum of a signal {y(t)} can be defined as

ck =
1

N

N−1∑
p=0

ln(Φp)e
iωkp k = 0, ..., N − 1 (3)

where it is assumed that Φp > 0, ∀p. Following [3] [4], the
sequence {ck} will also be called vocariance sequence, due
to its resemblance with the covariance sequence.

Thresholding the vocariance sequence and taking expo-
nential function of the inverse Fourier transform results in a
smoothed spectrum. The thresholding can be performed in
many ways, two of which are Simple Thresholding, abbre-
viated SThresh, ([3] [4]) and Empirical Bayes Thresholding
(EbayesThresh) ([11] [12]). These methods are used in this
article to perform smoothing in a real-life data example, in
a Monte Carlo simulation with full data, and a Monte Carlo
simulation where ten percent of the data is missing.

2. METHODS

2.1. Simple Thresholding

The vocariance sequence has several interesting features, one
of which is its mirror symmetry:

cN−k = ck k = 0, 1, ...,
N

2
, (4)

which means that only half of the sequence, c0, ..., cN
2

, is dis-
tinct. The other half is obtained from c1, ..., cN

2
−1

via (4).
Using the periodogram estimate in (2), a common esti-

mate of the vocariance is given by [3] [4]:

ĉk =
1

N

N−1∑
p=0

ln(Φ̂p)e
iωkp + γδk,0 k = 0, ...,M (5)
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where

δk,0 =

{
1 if k = 0
0 else,

(6)

M = N
2

and γ = 0.577216 (Euler’s constant).
It can be shown (see, e.g., [3]) that for large samples, the

estimated vocariances {ĉk}
M
k=0

are independent normally dis-
tributed random variables:

ĉk ∼ N (ck, s2

k) (7)
with

s2

k =

{
π2

3N
if k = 0,M

π2

6N
if k = 1, ..,M − 1.

(8)

With the above equations in mind, the idea behind cep-
strum thresholding is straightforward. Let c̃k be a new esti-
mate of ck and note that c̃k = 0 has a mean squared error
(mse) equal to c2

k. This estimate is preferred to ĉk as long as
c2

k ≤ s2

k. Now let

S = {k ∈ [0,M ] | c2

k ≤ s2

k} (9)

and let S̃ be an estimate of the set S. Thresholding {ĉk}k∈S̃

gives new estimates of ck:

c̃k =

{
0 if k ∈ S̃
ĉk else

k = 0, ...M. (10)

A good estimate of S is given by (see [4] for details):

S̃ = {k ∈ [0,M ] | |ĉk| ≤ µsk} (11)

where the parameter µ controls the risk of concluding that |ck|
is “significant” when this is not true, the so called “false alarm
probability”. The following values of µ are recommended in
[4] for N ∈ (128, 2048):

µ = µ0 +
N − 128

1920
(12)

where

µ0 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4 for a broadband signal with
small dynamic range

3 for a broadband signal with
large dynamic range

2 for a narrowband signal with
vary large dynamic range.

(13)

This means that µ will belong to the interval (µ0, µ0 +1). For
other intervals of the sample length, N , similar rules can be
given.

Since µ has to be chosen manually, the method is not
fully automatic. However, the a priori information needed
for the selection of µ is modest; a quick inspection of the pe-
riodogram tells whether the signal is broad- or narrowbanded
and whether its dynamic range is large or small. The SThresh
scheme can thus be considered to be essentially automatic. A
suggestion for a fully automatic scheme is given in [4].

Finally, the smoothed spectral estimate corresponding to
{c̃k} is given by:

Φ̃p = exp

[
N−1∑
k=0

c̃ke−iωpk

]
p = 0, ..., N − 1. (14)

2.2. Empirical Bayes Thresholding

EbayesThresh is a fully automatic method aimed to estimate
sparse sequences observed in Gaussian white noise. Simu-
lations have shown that the method has an excellent perfor-
mance (see [11]) and there are implementations of the method
in both the R language ([13]) and MATLABTM([14]).

Very briefly, EbayesThresh uses—as the name suggests—
an empirical Bayes approach to solve the estimation prob-
lem. Under a Bayesian model, each parameter ck is assumed
to be zero with probability (1 − w), while, with probability
w, ck is considered to be drawn from a symmetric heavy-
tailed density. w is chosen automatically from the data us-
ing a marginal maximum likelihood approach and then in-
serted into the Bayesian model. The (soft) threshold is thus
given by the choice of w. For a detailed explanation of the
EbayesThresh method, see, e.g., [11] and [12].

In this article, EbayesThresh was performed on the vo-
cariance sequence ĉk, giving a thresholded sequence c̃ebayes

k .
The smoothed spectral estimate was then given by (14) simi-
larly to the SThresh method.

3. EXAMPLES

The two methods SThresh and EbayesThresh were applied to
three types of signals:

• A broadband moving average (MA) signal with small
dynamic range with MA equation, below called the full
data case:

y(t) = e(t) + 0.55e(t − 1) + 0.15e(t − 2)

t = 0, ..., N − 1.
(15)

• The broadband MA in (15), but with ten percent of the
data missing, i.e. set randomly to zero, below called the
missing data case.

• A real-life data set, a sampled ocean wave, taken from
[2].

The EbayesThresh method was called as:
c ebayes = ebayesthresh(data=c hat, prior=

’laplace’, a=[], bayesfac=0, sdev=[],

verbose=0, threshrule=’median’, isotone=0).
This means that c hat (= ĉk) was thresholded using a La-
place prior, which scale factor (parameter a) was estimated
using marginal maximum likelihood. The Bayes factor thresh-
old was not used, the standard deviation was estimated using
median absolute deviation from zero, no verbose mode was
used, the median thresholding rule was applied, and, with
isotone=0, the monote marginal likelihood estimation was
not used. See, e.g., [12] [13] [14] for more details on this
method. The parameters were set accordingly to the recom-
mendations in [11] and mostly using their default values. The
SThresh method was used with µ0 = 4.
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Fig. 1. Log-spectrum of the MA signal: a) the true spectrum,
b) the averaged periodogram with its standard deviations, and
c) and d) the averaged smoothed periodograms and their stan-
dard deviations, obtained via SThresh and EbayesThresh.
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Fig. 2. Log-spectrum of the MA signal when ten percent of
the data is missing: a) the true spectrum, b) the averaged pe-
riodogram with its standard deviations, and c) and d) the av-
eraged smoothed periodogram and their standard deviations,
obtained via SThresh and EbayesThresh.

3.1. The Simulated Examples

The simulations, both for the full data and the missing data
case, were performed as 1000 Monte Carlo runs for N =
128, 256, 512, 1024 and 2048. The periodograms were aver-
aged and the averaged periodogram together with its standard
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(a) Full data case.

128 256 512 1024 2048
0

20

40

60

80

100

N

SThresh
EbayesThresh

(b) Missing data case.

Fig. 3. The ratio TV(ĉ)/TV(c̃), versus N , for the two thresh-
olding methods in the full data and the missing data case.

deviations can be seen in Fig. 1(b) for the full data and in
Fig. 2(b) for the missing data case. Fig. 1(a) and 2(a) dis-
plays the true spectrum of the MA signal. Fig. 1 also contains
the averaged smoothed periodograms and their standard devi-
ations. In Fig. 2 these plots can also be seen for the missing
data case. The plots show the same tendencies: the standard
deviations are significantly decreased for the smoothed peri-
odograms compared to the non-smoothed periodogram and
the variance for the SThresh method is slightly smaller than
for the EbayesThresh method.

Fig. 3(a) and Fig. 3(b) show the ratios of the total vari-
ances of the periodogram and the thresholded periodogram,
TV(ĉ)/TV(c̃), for the two cases of simulated signals. The
TV is defined as:

TV(ĉ) �

N−1∑
k=0

E(ĉk − ck)2

=

N−1∑
k=0

E
[
ln(Φ̂p) − ln(Φp)

]2

(16)

and similarly for TV(c̃). A larger ratio is thus better. See e.g.
[4] for a more detailed discussion on the TV.

In both the full and the missing data case, SThresh shows
a better performance than EbayesThresh, even though the dif-
ference is not very large for smaller values of N . SThresh is
also generally significantly faster, in the full data simulation
around 170 times faster.

3.2. The Ocean Wave Data Example

The real-life data example is a time series recorded in the Pa-
cific Ocean by a wave-follower. Every 1/4 second the sea
level is measured as the wave-follower moves up and down
following the water surface. The data consists of N = 1024
data points and were low-pass filtered using an antialiasing
filter with a cutoff frequency of approximately 1 Hz. The
data was originally collected to investigate whether the rate at
which the spectrum decreases in the interval 0.2 to 1.0 Hz was
consistent with a physical model. The behaviour of frequen-
cies above 1 Hz was of little interest since it was mainly de-
termined by instrumentation and preprocessing. For more in-
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Fig. 4. Log-spectrum of the tapered periodogram of the ocean
wave data together with the smoothed periodograms obtained
via SThresh and EbayesThresh.

formation on the ocean wave data, see [2]. The data were pre-
processed as in [2], i.e. using a discrete prolate spheroidal se-
quence data taper to prevent leakage, before being smoothed.
The results can be seen in Fig. 4. The tapered periodogram
is highly erratic whereas both the smoothed curves show lit-
tle variance. Both SThresh and EbayesThresh give smoothed
periodograms where the slope in the range 0.2 to 1.0 Hz can
be easily computed, which was the purpose of this exercise.

4. CONCLUSIONS

Apparently both SThresh and EbayesThresh perform well as
smoothing methods: the variance of the raw periodogram is
significantly decreased. SThresh appears to perform better
as its ratio TV(ĉ)/TV(c̃) is superior to that of EbayesThresh,
both for the full data case and the missing data case. SThresh
also has the following additional advantages:

• It is very fast, around 170 times faster than Ebayes-
Thresh.

• It is more intuitive to explain and is easier to implement
than EbayesThresh.

• It has fewer user parameters than EbayesThresh: only
µ has to be selected, whereas for EbayesThresh there
are several parameters that can be tuned.

Presumably EbayesThresh might perform better, if its pa-
rameters are tuned. But since the method was supposed to be
automatic, little effort was spent on tuning.
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