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ABSTRACT 

Principal component analysis (PCA) has been proposed for 
the estimation of the self-similarity parameter H, namely the 
Hurst parameter of 1/f processes, and an analytical proof is 
provided only for H=0.5 in a recent study [1]. In our paper, 
we extend this study by deriving explicit expressions and 
presenting an analytical proof for the range of 0 < H < 0.5 
(the anti-persistent part of the fractional Brownian motion). 
We also show via simulations that the accuracy of the 
estimated H values may decrease considerably as the 
theoretical H value increases towards the persistent part 
(0.5< H < 1). 

1. INTRODUCTION 

1/f processes are a family of statistically self-similar (SSS) 
processes. An SSS process x(t) has the scaling property 
given below: 
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where H is the Hurst parameter, a is a positive real number 
and =

d denotes statistical equivalence [2]. Self-similarity is a 
common property observed in many man-made and natural 
phenomena such as physiological heart-rate records [3], 
economical time-series [4], geophysical processes            
[5], teletraffic data [6], speech signal residuals [7], 
electromagnetic fluctuations [2] and many more. Such self-
similar processes obey the following well-known power law 
relationship: 
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where Sx(f) is the power spectrum of the time series x(t), x
2

is the variance and f is the frequency. 
Fractional Brownian motion (fBm) processes are one of 

the widely used models of the 1/f processes. fBms are zero-
mean, normally distributed, nonstationary random processes 

and their complete statistical characterization can be 
achieved by a single parameter, H, in the range of (0, 1). 
Since H is a significant parameter for 1/f processes a 
number of techniques are developed to estimate it [8]. In a 
recent study, the Principal Component Analysis (PCA) 
method is suggested for estimating the H parameter of fBm 
processes and an analytical proof is provided for H = 0.5 
only [1]. Here, we extend this study by providing an 
analytical proof for the range of 0 < H < 0.5. Furthermore, 
we show through simulations that PCA method may not 
always yield accurate estimations when 0.5 < H < 1.

This paper is organized as follows: In the next section, 
we summarize our derivations for 0 < H < 0.5. Simulation 
results and performance evaluations are given in Section 3. 
Main conclusion is given in Section 4. 

2. DERIVATIONS

In this section, we start with the standard definitions of fBm 
process x(t), where the autocorrelation function R(t1,t2) is 
given as [2]: 
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Here (.) is the gamma function and E{.} denotes the 
expectation operator. Traditionally, the fBm processes are 
divided in three parts, i.e., 0 < H < 0.5, antipersistent range 
where the process shows tendency to change its trend, 
sometimes referred as “negatively correlated”; H = 0.5, 
classicial Brownian motion (Bm); and 0.5 < H < 1, the 
process has the behavior to persist in the same way, 
sometimes referred as “positively correlated” [9]. 

The PCA method proposed in [1] relies on the 
eigenanalysis of the autocorrelation function in Eq. (3): 

i i i i=1,...,NR ,                     (5) 
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where i’s are eigenvalues and i’s are the corresponding 
eigenvectors of the autocorrelation matrix R of the 
discretized process of x(t) with the truncation length N. The 
Karhunen-Loéve expansion is known to be the continuous 
version of PCA whose fundamental equation can be given 
as [11]: 
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where -T/2<t1<T/2, -T/2<t2<T/2 and (t)’s are the 
orthonormal eigenfunctions corresponding to the 
eigenvectors. In [1], it is shown only for H=0.5 that by 
substituting the autocorrelation function of classical 
Brownian motion (H=0.5) in Eq. (6), the relationship 
between the eigenvalues, i, and their indices i sorted in 
decreasing order is proportional: 

2 1( H )
i i                                   (7) 

Following the same procedure, we consider the case      
H  0.5 to explore whether the similar relationship holds. 
We start with substituting Eq. (3) into Eq. (6) and then 
apply the Karhunen-Loéve expansion for H  0.5 which 
yields 
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Using the Leibniz’s formula [13], we differentiate both 
sides of the above expression with respect to the variable t1

and obtain: 
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          (9)  

Notice that this differentiation causes discontinuity at          
H = 0.5, which is out of the interval we are interested in. 

Similar to [11], we try a solution for eigenfunctions as 
complex exponentials: 
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whose derivative yields to: 

i i i'( t ) j exp( j t )                       (11) 

By substituting Eq. (11) into Eq. (9) and after some algebra 
and change of variables, we reach to the following equation: 
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Assuming a large interval T, we seek for a solution when 
T . Then Eq. (12) reduces to: 
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Using the following property [14], 
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the integral in Eq. (13) can be rewritten in terms of the 
gamma function as: 
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which is convergent only for 0 < H < 0.5. By substituting 
Eq. (4) into Eq. (15), a relatively simple expression between 

i and i is obtained: 
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Hence, we are able to show that Eq. (7) also holds for            
0 < H < 0.5. 

If we take the logarithm of both sides, and apply a linear 
fit algorithm, the slope of the straight line gives 2H + 1, and 
then the H parameter can be easily estimated.  

3. EXPERIMENTAL RESULTS 

In this section we present the results of our experiments to 
illustrate the accuracy of the PCA based H parameter 
estimation. 

3.1 Synthetic fBm data generation 

We generated synthetic fBm data by using three different 
synthesis techniques: 
- Fourier Based Spectral (FBS) Method: This method 
relies on constructing the power-law relationship for the 
signal in the spectral domain and taking the inverse Fourier 
transform [10]. 
- Random Midpoint Displacement (RMD) Method: This 
method is based on adding new midpoints to the recursively 
divided subintervals [15] 
- Wavelet Based Generation (WBG) Method: This 
method examines the progression of the variances of the 
wavelet coefficients along scales. The wavelet coefficients 
at different scales are constructed and the time-domain 
process is obtained through an inverse transform using these 
coefficients. 

3.2 fBm data examples and their PCA analyses 

In Fig.1-(a), a synthetic fBm trace (length of 4096) with      
H = 0.4, and in Fig. 1-(b) the eigenvalue progression plot 
corresponding this trace are shown. The estimated H
parameter, , is calculated as: 0.4114. 

In Fig. 2-(a), a synthetic fBm trace (length of 4096) with 
H = 0.8 and in Fig. 2-(b) its eigenvalue progression are 
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plotted respectively. In this example the H parameter is 
estimated as 0.5322 which is not accurate. It is observed in 
Fig. 2-(b) that a few dominant eigenvalues remain out of the 
linear progression of the rest. 

It is relevant to mention here that, since the lag of the 
autocorrelation function corresponds to the number of 
eigenvalues, it is a critical parameter on the performance of 
the estimator. In practice, the lag can be selected from 1% to 
10% of the data length [16]. In our experiments, where the 
data length is 4096, we have chosen it as 300 points to ease 
the computational burden. 
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Figure 1: a) fBm trace (H = 0.4), b) Eigenvalue progression 
plot (  = 0.4114). 
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Figure 2: a) fBm trace (H = 0.8), b) Eigenvalue progression 
plot (  = 0.5322). 

3.3 Analysis of fBms with different H 

We generate a set of fBm traces having H between 0.1 
and 0.9 with an increment of 0.1 using data length of 4096. 

For each H, 100 data sets are generated by FBS, RMD, and 
WBG algorithms. Then we estimated the H parameters of 
the fBm sample paths by the PCA based method.  

To provide information on the bias of the estimation 
method we define the mean-square error (MSE) as: 
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Here, H is the theoretical Hurst parameter, and  is the 
estimated value. Square roots of MSE versus the theoretical 
H values are shown in Fig. 3. When H > 0.5 increase in 
MSE is observed, which indicates that the accuracy of the 
estimator drastically decreases for that region. This result 
can also be seen in Figure 4, where we provide the box plot 
of the estimated H values of the fBm data sets. When          
H > 0.5, the method may underestimate the H parameters 
with relatively higher variances. 
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Figure 3: sqrt(MSE) versus H.
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Figure 4: Box plot of the estimated H.

3.4 Effect of data length 

In order to investigate the dependency of the PCA method 
on the data length, a set of Bm traces having lengths 
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N=1024, 2048, 4096, 8192 and 16384 are generated and 
tested. In Fig. 5, the square roots of MSE versus the lengths 
N are shown which reveals that the estimates do not overly 
sensitive to the data length. 

Figure 5: sqrt(MSE) versus the length of data N.

4. CONCLUSION 

In this work, we provide an explicit expression for the 
antipersistent part (H < 0.5) of an fBm process which 
shows, for PCA, a linear eigenvalue progression in the 
logarithmic scale. However, because of divergence of the 
derived expression, the proof is not valid for H > 0.5. We 
include simulation results to show that PCA is an 
appropriate estimator when 0 < H < 0.5 and H = 0.5.
Nevertheless, the accuracy of the PCA method is 
questionable for 0.5 < H <1. We conclude that one should 
be careful while analyzing 1/f processes for H > 0.5 with 
PCA. As a matter of fact, using PCA to estimate the H
parameter is not fully recommended in this paper. However, 
there are indications that the power-law eigenstructure can 
be related to some information retrieval applications with 
power-law networks, i.e., from Internet to biological 
networks of genes, and protein interactions, etc. 
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