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ABSTRACT

Various methods have been proposed to estimate the param-
eters of the exponentially damped sinusoidal (EDS) model.
As most estimation methods do not yield optimal parame-
ter values, it is often useful to apply further optimization.
In this work, various optimization algorithms which can be
used for both frequency and damping factor parameters are
developed and compared. The optimization methods include
Newton and Gauss-Newton methods, which were improved
by applying a regularization factor resulting in the Levenberg-
Marquardt method. Estimation and optimization algorithms
were implemented and tested in two different methodologies:
a method where optimization is performed on all partials si-
multaneously, and a pseudo-simultaneous method where op-
timization is performed on individual partials in an iterative
manner.

1. INTRODUCTION

Sinusoidal modeling of audio signals is a powerful and flex-
ible method, because of the many applications it allows, like
low-bitrate coding and time/pitch-scale modifications. The
original model [1] is limited to sinusoidal components with
a constant amplitude and frequency, making it unsuitable for
fast varying signals unless small time-domain windows are
used for analysis and synthesis. By using exponentially dam-
ped sinusoids [2], the model is made more suitable for ex-
ponentially decaying sounds, which are common in music
(e.g. piano and percussive instruments). It consists of K
damped sinusoids with frequencies ωk, complex amplitudes
Ak = Ar

k + iAi
k and damping factors ρk, for k = 0,...,K-1, and

can be expressed as follows:

yn =
K−1∑
k=0

e(ρk
n
N )

[
Ar

k cos(2πωk
n

N
) − Ai

k sin(2πωk
n

N
)
]

Various parameter estimation methods have been proposed in
the literature, like spectral peak-picking [1], matching pur-
suits [3] and subspace-based methods [2, 4]. The first two

methods can be implemented in a computationally cheap man-
ner, but lead to sub-optimal results. Subspace-methods re-
sult in a considerably higher modeling accuracy, but have
a high computational complexity, namely O(N3). A way
to improve the results of spectral peak picking and match-
ing pursuit methods, is to apply an optimization method (e.g.
Newton) to the estimated parameters. However, this method
isn’t used often because of it’s high computational complexity
(typically O(NK2) when all frequency parameters are opti-
mized simultaneously). Recently, it was shown that the com-
putational complexity of the optimization can be reduced to
O(N log(N)) in the case of stationary sinusoids and if analy-
sis windows with band-limited frequency responses are used
[5]. In this work, optimization methods for the exponentially
damped model will be discussed.

2. COMPLEX AMPLITUDE CALCULATION

If the frequencies and damping factors of the sinusoidal com-
ponents are known, their complex amplitudes can be calcu-
lated by using a least squares method. The partial derivatives,
with respect to each Ar

l and Ai
l , for l = 1,...,K, of the squared

difference between the input signal xn and the model yn are
put to zero:

∂

∂Ai
l

N−1∑
n=0

(xn − yn)2 = 0,
∂

∂Ar
l

N−1∑
n=0

(xn − yn)2 = 0

These expressions are lineair in Ai
l and Ai

l respectively, which
means that all amplitudes can be calculated simultaneously
by solving a 2K-dimensional linear system. An alternative
method is to calculate the amplitudes in a sequential man-
ner, in which case the least squares difference between x

(l−1)
n

(which is the original signal where the l-1 previously analysed
partials have been subtracted from) and the l-th partial is con-
sidered and the above system reduces to a 2-dimensional sys-
tem. The computational complexity of the sequential method
is O(NK), where the simultaneous method scales O(NK2).
However, the sequential method results in incorrect values if
the sinusoidal components have an overlapping frequency re-
spons, which is especially the case with exponentially damped
sinusoids. This will be discussed further in section 5.1.
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3. FREQUENCY OPTIMIZATION

The partial derivatives of the error function which respect to
ωl are given by

∂

∂ωl

N−1∑
n=n0

(xn − yn)2 =
∑

n

2(xn − yn)e(ρl
n
N )(2π

n

N
)

[
Ar

l sin(2πωl
n

N
) + Ai

l cos(2πωl
n

N
)
]

(1)

which are non-linear in ωl. Therefore, they will be estimated
by spectral peak picking and iteratively optimized using New-
ton or Gauss-Newton methods, resulting in a non-linear least
squares method.

3.1. Newton optimization

A Newton step for frequency optimization is based on a qua-
dratic approximation of the error function and typically looks
as follows:

ω = ω̂ − H−1h

meaning a new frequency value ω is estimated based on a pre-
vious estimation ω̂ at each optimization step. The elements
of the gradient h are defined as the first order partial deriva-
tives of the error function, and are therefore equal to equation
(1). In case of the simultaneous method, the hessian H is
a K x K matrix for which each element Hl,k is defined as

∂
∂ωl

∂
∂ωk

(xn − yn)2. In case of the sequential and pseudo-
simultaneous method, H and h are scalars.

3.2. Gauss-Newton optimization

As an alternative method, a Gauss-Newton optimization step
can be performed. This is done by making a linear approxima-
tion of the model, by using a first order Taylor approximation
around point ω̂, which results in

K−1∑
k=0

e(ρk
n
N )

[
Ar

k cos(2πω̂k
n

N
) − Ai

k sin(2πω̂k
n

N
)
]

+

(2π
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N
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[
−Ar

k sin(2πω̂k
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k cos(2πω̂k
n

N
)
]

(ωk − ω̂k)

denoted as ỹn. The partial derivatives of the error function
with respect to each (ωl − ω̂l) are linear so we can find it’s
minimum by putting them to zero:

∂
∑

n(xn − ỹn)2

∂(ωl − ω̂l)
= 0

resulting in the linear system

GA = g

with
Al = ωl − ω̂l

yielding

ωl = ω̂l + G−1g

It can easily be shown that g equals −h and that G and H
only differ in the elements on their diagonal.

3.3. Regularized variants

It is commonly known that Newton and Gauss-Newton meth-
ods have some shortcomings. One of them is that the direction
of the optimization step may be incorrect if the system matrix
is not positive definite. There is no method to verify this con-
dition, but in practice one can check if the optimization step
doesn’t point in the opposite direction of the gradient and the
value of the error function decreases after each optimization
step. If these conditions are not satisfied, the direction of the
optimization step is not correct or the step size is too large.
Both problems can be dealt with by adding a regularization
term λI , with I being the unit matrix. For large values of λ,
the optimization nearly equals the gradient descent method,
with a learning speed of 1

λ . For small values of λ, the ef-
fect of this addition is small, hence the optimization step will
be close the Newton (Gauss-Newton) optimization step. A
commonly used strategy to determine the optimal value for λ
at each step is by initializing λ with a small value, increas-
ing it with a factor 10 each time an optimization step fails (in
which case ω is not updated), and decrease it otherwise. The
Gauss-Newton method with a correction factor taken into ac-
count is also known as the Levenberg-Marquardt method and
is known to be one of the most powerful and robust optimiza-
tion techniques [6].

4. DAMPING FACTOR ESTIMATION AND
OPTIMIZATION

The damping factors can be optimized in a similar way af-
ter an initial estimation has been made. Both the Newton
and Gauss-Newton optimization methods were implemented
in this context, where the same considerations apply as in the
case of frequency optimization. The initial estimation is made
by considering the frequency responses of ωk within the orig-
inal analysis window and a window that has been shifted by p
samples. It can be shown that

ρk =
N − p

p
ln

∑N−1
n=p yne(2πiωk

n
N )

∑N−p−1
n=0 yne(2πiωk

n
N )

(2)

If the input signal xn is conform to the assumptions of the
model, ρk can be estimated by substituting xn for yn in (2).

III  481



5. COMPLETE ANALYSIS OF A GIVEN INPUT
SIGNAL

5.1. Sequential, pseudo-simultaneous and simultaneous op-
timization methods

To do a complete analysis of an input sound, various strate-
gies can be applied to obtain the parameters for each sinu-
soidal component. The simplest strategy is to analyse all
partials in a sequential order. This consists of a repetitive
process of estimating and optimizing the parameters of the
strongest component in the signal and subtracting that com-
ponent from the signal, until a certain stopping criterium is
reached. A possible stopping criterium could be that a max-
imum number of components has been analysed, or that the
power of the residual signal has decreased below a certain
treshold. This method is computationally cheap: it has a com-
plexity of O(N) per optimization step for one partial. A ma-
jor drawback of this method is that the estimated parameters
will not be accurate if the frequency responses of some com-
ponents overlap. The simultaneous method is able to deter-
mine the exact parameters but the computational complexity
of one simultaneous optimization step is O(K2N). The se-
quential method can be improved by iterating a number of
times over all the partials and reanalysing them using a signal
where all other partials have been subtracted from. We call
this the pseudo-simultaneous method.

5.2. Obtaining the various parameters of a partial

For each partial that is analysed, three different parameters
have to be obtained. The main problem in this context is that
each calculation or optimization step implicitely assumes that
the other parameters are known. In practice, an estimation of
the parameters is often known and the optimization steps can
be applied on the estimated parameters. This leads to sub-
optimal results, but when the analysis algorithm performs the
several calculation and optimization steps in a well-chosen
order, all parameters will converge to their optimal value. A
possible method to obtain the parameters of one or more par-
tials is given in algorithm 1, where we chose to optimize ω
before ρ because the ω can be optimized quite accurate when
ρ is incorrect. When, on the other hand, the estimated fre-
quency value of a partial is far from it’s optimum, damping
optimization will fail because the error function will be at it’s
minimum for ρl = −∞. The stop criterium can be chosen
depending on the needs of the situation.

6. TEST RESULTS

A comparison between Newton, Gauss-Newton and their reg-
ularized variants was made. A synthetic test signal consist-
ing of two partials with a strongly overlapping frequency re-
sponse was used. It’s parameters are given by ω = [1000,
1005], A = [3 + 2i, 7 − 4i], ρ = [−5,−9] and a fixed length

Algorithm 1 AnalyseNPartials(xn, N)
1: ω = estimFreq(xn, N);
2: ρ = estimDamping(xn, ω, N);
3: repeat
4: for j = 0 to nrOfFreqOptimSteps do
5: A = calcAmp(xn, ω, ρ, N);
6: ω = freqOptim(xn, A, ω, ρ, N);
7: end for
8: for j = 0 to nrOfDampingOptimSteps do
9: A = calcAmp(xn, ω, ρ, N);

10: ρ = dampingOptim(xn, A, ω, ρ,N);
11: end for
12: until stop criterium reached

of N = 8192 samples. In figure 1, the optimization trails of
the tested methods are shown for various sets of initial fre-
quency values, from which one can conclude that the Newton
method behaves very bad at the edges of the frequency range
considered, so that the mimimum is not reached. Regular-
ized Newton performs considerably better and is able to find
the optimum for each tested set of initial values. The Gauss-
Newton method leads to very good results in this test, as
there is no regularization needed for any of the initial values.
These experiments were also executed for damping factor op-
timization, yielding similar results. The pseudo-simultaneous
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Fig. 1. Different simultaneous frequency optimization algo-
rithms applied to a signal consisting of two partials

and simultaneous Newton and Gauss-Newton methods were
compared in terms of error decrease and computational time
per optimization sequence. For this test, we used only the
regularized variants of the algorithms. An optimization se-
quence consists of 4 frequency optimization steps, followed
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by 3 damping factor optimization steps. Each optimization
step was preceded by a complex amplitude calculation. Var-
ious synthetic test signals with a different number of partials
were used. Their parameters were chosen so that all partials
were closely spaced in the frequency domain and had an over-
lapping frequency response. Initial frequency values were ob-
tained by pertubating the frequency values of the testsignal,
and damping factor estimations were obtained by the method
described in section 4. The error decrease during the first 30
optimization steps is shown in figure 3, from which we can
conclude that the simultaneous methods need less steps than
pseudo-simultaneous method. For large values of K however,
the pseudo-simultaneous method will be faster in terms of
computational time needed. This is shown in figure 2, where
the computational time of one optimization sequence of each
method is shown with respect to the number of partials. This
shows that the complexity of the pseudo-simultaneous meth-
ods is only slightly larger than O(NK), while simultaneous
methods scale about O(NK2).
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Fig. 2. Computational time per optimization sequence

7. CONCLUSIONS AND FUTURE WORK

The general conclusion one can make is that the Levenberg-
Marquardt method, performed in a pseudo-simultaneous man-
ner, is an efficient method for the optimization of frequency
and damping factor values of the EDS model. One of the
remaining problems of the implemented optimization meth-
ods is that the optimization steps for each parameter are not
optimal because they depend on other unknown parameters.
The frequency and damping factor could be optimized simul-
taneously, but that isn’t worth the computational complexity
because the frequency depends only weakly to the damping
factor. Generally speaking, optimizing multiple parameters
simultaneously is efficient when the mutual dependence of the
parameters is strong enough to justify the additional compu-
tational cost. In the case of the EDS model, it is clear that the
amplitudes of overlapping partials depend on each other, so it
makes sense to calculate them in a simultaneous way. There is
also a strong dependence between the complex amplitude and
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Fig. 3. Comparing the logarithmic error decrease of the tested
optimization methods

the frequency and between the amplitude and damping factor
of each partial, forcing us to execute a amplitude computation
step before each optimization step, still yielding non-optimal
optimization steps. If this dependency could be taken into
account, the required number of optimization steps might be
reduced further.
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