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ABSTRACT

We study the behavior of hybrid random waveform models for audio
signals, involving sparse random series of waveforms, with random
coefficients. Similar approaches have been considered in the recent
years. However, these do generally not rely on explicit models, and
are of more “algorithmical” nature. The models we propose allow us
to analyze mathematical properties of such signals and correspond-
ing estimators, and derive estimation algorithms, which do not rely
on complex optimization techniques.

1. INTRODUCTION

Recently, models for audio signal involving decompositions
signal = tonal + transient + residual

have been proposed [1, 2], together with algorithms for estimating
the corresponding components, with various applications. Often, the
models were not specified explicitely, the proposed methods being
more algorithmic in nature (see for example [3, 4, 5, 6]).

We study here more specific models, based on expansions on
waveform systems. The main idea is to start with an orthonormal
basis (or a frame, see [7] for the definition) of waveforms with re-
spect to which a given component (tonal, or transient) is assumed to
admit sparse expansions. Starting from an explicit model for such
expansions yields estimates for the behavior of the observed coef-
ficients (i.e. the coefficients computed from the realization of the
signal) with respect to these bases (or frames), which we use to de-
rive corresponding estimation algorithms.

We work here in a finite N -dimensional setting, and denote by
IN a corresponding index set. We denote by U and Ψ two orthonor-
mal bases of C

N , and consider the dictionary constructed as the
union U ∪ Ψ, on which sparse signal expansions are to be seeked.
The models under study are based on the following ingredients :

• Significance maps : two (small) subsets Λ and ∆ of the index
set IN , modelled as random sets.

• Coefficients : to each δ ∈ ∆ (resp. λ ∈ Λ) is associated a
random variable βδ (resp. αλ).

The random waveform model associated with these ingredients
takes the form of a linear combination of the (random) elements of
Ψ and U labelled by the significance maps Λ and ∆ respectively,
with (random) coefficients βδ and αλ. Given such a signal model,
we address the following main problems : from one (or several) real-
ization(s) of the signal, assuming sparsity (i.e. the significance maps
are small sets) and dictionary incoherence (i.e. the two bases are
“significantly different”),
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• Estimate the parameters of the model (variances of coeffi-
cients, distribution of the significance maps,...)

• Estimate the significance maps Λ and ∆.

• Estimate the two layers : tonal xU =
∑

δ∈∆ βδuδ and tran-
sient xΨ =

∑
λ∈Λ αλψλ.

Several approaches may be developed to solve such problems, in-
cluding Bayesian MCMC type algorithms [8]. We stick here to
simpler approaches, based on the behavior of observed coefficients,
which present the advantage of lower computational load. The dis-
tribution of observed coefficients turns out to be understandable in a
farily simple way, which justifies the algorithmic approach we pro-
pose. In a few words, when the layers are sparse enough in the
considered bases, and if the latter are different enough from each
others, the pdf of the coefficients of the signal with respect to the
U and Ψ bases may be approximated as a mixture of two (or more)
gaussian pdfs. Then, standard procedures may be developed for the
estimation of parameters and significance maps, and therefore for
the layers. Our approach differs from that of [1, 2] in that it permits
the simultaneous estimation of both layers, rather than a sequential
estimation.

The random waveform model and the corresponding estimation
problem are the main aspects that we discuss here. The random
waveform model is presented in Section 2, where the behavior of
observed coefficients is also studied. The estimation algorithms and
corresponding numerical results are given in Section 3, and Section 4
is devoted to an outline of possible extensions of the model, and ap-
plications.

2. HYBRID WAVEFORM MODELS

2.1. Generalities

Let H denote a finite dimensional Hilbert space of dimension N , let
I = {1, . . . N} and let Ψ = {ψn, n ∈ I} and U = {un, n ∈
I} be two orthonormal bases of H. We denote by D = Ψ ∪ U
the dictionary made as the union of these two bases. D is clearly
(over)complete in H, and any x ∈ H admits an infinite number of
expansions in the form x =

∑N
n=1 αnψn +

∑N
m=1 βmum , where

αn, βm ∈ C. We are interested in sparse signals, i.e. signals x ∈ H
that may be written as

x =
∑
λ∈Λ

αλψλ +
∑
δ∈∆

βδuδ + r , (1)

where Λ, ∆ are small subsets of the index set {1, 2, . . . N}, and r ∈
H is a small (possibly vanishing) residual.

Given such a sparse signal, the non-uniqueness of its expansion
with respect to the dictionary makes it difficult to identify unambigu-
ously the expansion (1), and one must rely to additional arguments
to impose sparsity constraints. Greedy algorithms provide a way to
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enforce such constraints. In such situations, it may be shown that
if the two bases Ψ and U are sufficiently incoherent, the expansion
may be recovered if the sets Λ and ∆ are small enough.

In the numerical examples presented in this work, we limit our-
selves to two different pair of orthonormal bases : U will be a local
trigonometric basis (tuned in such a way to achieve good frequency
resolution), and Ψ will be either a wavelet basis, or a local cosine
basis with good time resolution. In both cases, the index sets will ac-
tually be two-dimensional (a time index and a frequency index), and
we shall write them as such when necessary. Other choices for the
bases are possible, as well as extensions to frames (not considered
here).

2.2. Random hybrid models

We now introduce an explicit model for the sparse signal in (1). The
ingredients of such models are essentially twofold : a model for the
sets Λ and ∆, hereafter termed significance maps, and, given these
significance maps Λ and ∆, a model for the coefficients αλ, λ ∈ Λ
and βδ, δ ∈ ∆.

Definition 1 Given two orthonormal bases in H as above, a corre-
sponding random hybrid model is characterized by
i. A discrete probability model for the significance maps. The corre-
sponding probability measures for the (random) maps Λ and ∆ will
be denoted by PΛ and P∆, and the expectations by EΛ and E∆.
ii. A probabilistic model for the coefficients αλ, λ ∈ Λ and βδ, δ ∈
∆, conditional to the significance maps. The corresponding proba-
bility measure and expectation will be denoted by P0 and E0.

The global probability measure and expectation will be denoted
by P and E.

The simplest possible model for the significance maps is the Bernoulli
model : given a fixed membership probability p, the index values
n ∈ {1, . . . N} are iid, and belong to Λ with probability p and to
Λ (the complementary set) with probability 1 − p. The membership
probability for ∆ will be denoted by p̃. More sophisticated models
for the significance maps involve correlations between elements of
the significance maps.

The simplest instance for coefficient models, to which we shall
stick here, assume that significant coefficients are i.i.d. N (0, σ2)
random variables, in other words their pdf (conditional to Λ) reads

ραn(z|Λ) =
1

σ
√

2π
e−z2/2σ2

.

The residual will be modeled here as a Gaussian white noise, with
variance σ2

0 .

Remark 1 Since n is actually a time-frequency index, an obvious
(and fairly realistic) modification consists in taking frequency depen-
dent values for the variances of α and β coefficients, and coloured
stationary noise for the residual.

2.3. Behavior of the observed coefficients

In practice, the only available observation is the signal x. We choose
to exploit the observed coefficients

an = 〈x, ψn〉 , bm = 〈x, um〉 (2)

for estimating a sparse expansion. As a first step, let us start by
studying the distribution of these observed coefficients, conditional
to the significance maps. For this, we introduce the indicator random

variables XΛ
n = 1 if n ∈ Λ and 0 otherwise, and similarly for X∆

n .
Then,

an = 〈x, ψn〉 = αnXΛ
n +

N∑
m=1

βmX∆
m〈um, ψn〉 (3)

bn = 〈x, un〉 = βnX∆
n +

N∑
m=1

αmXΛ
m〈ψm, un〉 (4)

and one can state

Theorem 1 Conditional to the significance maps, the a and b co-
efficients are zero mean normal random variables, with covariance
matrices CΛ

k� = E0{aka�}, C∆
k� = E0

{
bkb�

}

CΛ
k� = (σ2XΛ

k + σ2
0)δk� + σ̃2

N∑
m=1

X∆
m〈ψk, um〉〈um, ψ�〉 ,

C∆
k� = (σ̃2X∆

k + σ2
0)δk� + σ2

N∑
m=1

XΛ
m〈uk, ψm〉〈ψm, u�〉 .

In particular, the diagonal terms read

E0

{|ak|2
}

= σ2XΛ
k + σ̃2

∑
δ∈∆

|〈ψk, uδ〉|2 + σ2
0 . (5)

Hence, the a (resp. b) coefficients are distributed according to a
(random) mixture of (several) normally distributed zero-mean ran-
dom variables. The distribution of these is governed by the cross
term in the right hand side of the covariance coefficients in Theo-
rem 1. Focusing on the diagonal terms of the covariance matrix, let
us introduce the following quantities

Definition 2 Let ∆ and Λ be two subsets of the index set IN . For
n ∈ IN , the Parseval weights are defined by

p̃n(∆) =
∑
δ∈∆

|〈ψn, uδ〉|2 , pn(Λ) =
∑
λ∈Λ

|〈un, ψλ〉|2 . (6)

It follows from Parseval’s formula that for all n and ∆ (resp. Λ),
0 ≤ p̃n(∆) ≤ 1 (resp. 0 ≤ pn(Λ) ≤ 1). The following elementary
result provides an estimate for the order of magnitude of the Parseval
weights :

EΛ {pn(Λ)} = p ; E∆ {p̃n(∆)} = p̃ . (7)

Therefore, one has

E0

{|ak|2
}

= σ2XΛ
k + σ̃2pk(∆) + σ2

0 .

Taking into account the distribution of ∆ leads to this simple consid-
eration on the behavior of observed coefficients : if the distribution
of the Parseval weights is peaked near the origin, then the coeffi-
cients ak will be accurately described as a mixture of two Gaussians.
Otherwise, more Gaussians will have to be taken into account.

Remark 2 The distribution of the Parseval weights is however diffi-
cult to study practically, as it depends on both the significance maps
and the incoherence of the dictionary D. In a few words : the sparser
the significance maps, the smaller the Parseval weights; and the less
coherent the dictionary, the smaller the Parseval weights.

The spectrum of the covariance matrix is of interest too. The
following estimate results from a direct application of Gershgorin’s
disk theorem.
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Theorem 2 Let z be an eigenvalue of the covariance matrix CΛ.
Then there exists k ∈ IN such that∣∣∣z −

(
σ2XΛ

k + σ̃2pk(∆) + σ2
0

)∣∣∣ ≤ σ̃2εk(∆) , (8)

where

εk(∆) =
∑
��=k

∣∣∣∣∣
∑
δ∈∆

〈ψ�, uδ〉〈uδ, ψk〉
∣∣∣∣∣ . (9)

Hence, if for all k one has that pk(∆) > εk(∆), the covariance ma-
trix is non-degenerate. However, this is not the general situation (in
particular for small noise variance σ0), and the vector of ak coef-
ficients is sometimes a degenerate Gaussian random vector, whose
distribution may nevertheless be characterized by its characteristic
function.

2.4. The case of the Bernoulli model

Assume that the points of the index set are iid. Then the probability
distribution of the significance map is given by

P{∆} = p̃|∆|(1 − p̃)N−|∆| , P{Λ} = p|Λ|(1 − p)N−|Λ| ,

the coefficients marginal distribution taking the simple form

ρan(ξ) = (1 − p)
∑

∆ P{∆} exp{−ξ2/2(σ̃2p̃n(∆)+σ2
0)}√

2π(σ̃2pn(∆)+σ2
0)

+ p
∑

∆ P{∆} exp{−ξ2/2(σ2+σ̃2p̃n(∆)+σ2
0)}√

2π(σ2+σ̃2pn(∆)+σ2
0)

(10)
The distribution of the coefficients is thus a mixture of two Gaus-
sian mixtures, whose behavior is again governed by the Parseval
weights. Assume for a while that the distribution of the random vari-
ables p̃n(∆) is essentially concentrated near a small value, say the
membership probability p̃ (see (7)). Then the two Gaussian mixtures
are zero-mean, and possess significantly different variances. In such
situations, it makes sense to try to separate them, in order to estimate
those index values n that belong to the significance map.

2.5. Structured models

Unlike the Bernoulli model, structured significance maps models in-
volve correlations between significance map elements. For example,
assuming U is an orthonormal basis of time-frequency waveforms,
correlations may be introduced between successive time indices, to
model time persistence properties of the corresponding (tonal) layer.
Similarly, correlations between frequencies may be introduced to
model signal components with short duraction, such as transients
( frequency persistence). In such situations, the marginal pdf of ob-
served coefficients is still as in (10), but the probabilities are not as
simple as before.

Interestingly enough, due to the decorrelation of the α and β
coefficients, the correlations in significance maps do not show up
in the second order moments of the observed coefficients a and b,
i.e. in matrices CΛ and C∆. For instance, neither EΛ

{CΛ
k�

}
nor

E∆

{CΛ
k�

}
involve the correlation functions of the significance maps

ΓΛ
k� := EΛ

{
XΛ

k XΛ
�

}
or Γ∆

k� := EΛ

{
X∆

k X∆
�

}
. Significance maps

correlations manifest themselves in higher order moments, for ex-
ample 4th order moment. Indeed, according to Isserlis’ formula

E0 {aka�aman} = CΛ
k�CΛ

mn + CΛ
kmCΛ

n� + CΛ
knCΛ

m� ,

and the expectations EΛ and E∆ of the latter quantities do involve
the significance maps correlations ΓΛ

k� and Γ∆
k�. However, these ex-

pressions can hardly be exploited in estimation algorithms.

3. HYBRID MODEL ESTIMATION

From now on, we limit ourselves to the simpler, Bernoulli model.
We propose a new family of “three-steps” procedures for the esti-
mation and separation of the two layers above, in the framework of
the Bernoulli model. In the numerical illustrations shown below, we
shall be using a pair of orthonormal bases.

3.1. Parameter and significance map estimation

In a first step, the parameters have to be estimated. For that, the
empirical distribution of the a and b coefficients is compared to a
Gaussian mixture model, whose parameters are estimated using EM
algorithm. When the signal admits a sparse enough expansion, i.e.
when the Parseval weights are small enough, a mixture of two Gaus-
sians may be recovered in that way. Otherwise, an iterative EM al-
gorithm may be used to recover a more complex Gaussian mixture,
further identified with a mixture of two Gaussian mixtures. In any
case, EM provides estimates for the variances σ2 + σ̃2p̃n(∆) and
σ̃2p̃n(∆) for the an coefficients in (10) (and similar quantities for
the bn coefficients), as well as membership probabilities p and p̃.

Once the parameters have been estimated, it may be shown that
maximum likelihood estimation of the significance maps Λ and ∆
amounts to simple thresholding strategies, the threshold being set to
the value for which the two pdfs intersect.

3.2. Coefficient estimation and multilayer signal decomposition

The significance maps estimation actually amounts to a dimension
reduction. Given a signal x, and the estimates ∆̂ and Λ̂ for ∆ and Λ,
let HD̂ denote the subspace of H spanned by the subdictionary D̂ =

{ψλ, λ ∈ Λ̂}∪ {uδ, δ ∈ ∆̂} . The estimates for the U and Ψ layers
of x using the reduced dictionary are obtained from its orthogonal
projection onto HD̂ : the signal approximation is x̂ = x̂U + x̂Ψ,
with

x̂U =
∑
δ∈∆̂

β̂δuδ , x̂Ψ =
∑
λ∈Λ̂

α̂λψλ . (11)

The coefficients α̂ and β̂ are obtained via
(
α̂1, ...α̂|Λ̂|, β̂1, ...β̂|∆̂|

)T

=G−1
(
a1, ...a|Λ̂|, b1, ...b|∆̂|

)T

, (12)

G being the Gram matrix of the dictionary. Therefore, the estima-
tion of the two layers simply amounts to a matrix inversion, of size

|Λ̂|+ |∆̂|, which is a reasonable task when the significance maps are
sparse enough.

Remark 3 When the significance maps are too large, so that invert-
ing the Gram matrix becomes computationally expensive, an alter-
native is provided by Wiener-type estimation [9] : estimates α̂λ and
β̂δ are obtained by a suitable weighting of the observed coefficients :

α̂λ =
σ2

σ2 + σ̃2pλ(∆) + σ2
0

aλ .

The estimates obtained are poorer estimates, but easier to compute.

3.3. Numerical illustrations

The approach proposed in this paper was implemented using the
MATLAB scientific computing environment, exploiting an MDCT
extracted from the Stanford WAVELAB toolbox1.

1See http://www-stat.stanford.edu/˜wavelab

III  474



We illustrate our approach by an example of multilayered de-
composition of xilophone signal (65536 samples at sampling rate
η = 44.1kHz, i.e. about 1.5 sec of sound), expanded onto a dictio-
nary constructed as the union of two MDCT bases. The two bases
were given windows of respective widths 2048 samples (about 46
msec.) and 128 samples (about 3 msec). The algorithm selected
|∆̂| = 138 tonal basis functions for the tonal layer, and |Λ̂| = 976
transient basis functions for the transient layer, i.e. all together less
than 1.7% of the number of samples. The complete decomposition
took about 3 mn on a 2.6GHz linux PC with 512 Mo RAM.

We display in Fig. 1 the estimated U component (termed “tonal
layer”) and the Ψ component (transient layer). As may be seen,
the separation is quite neat, the attacks have been smoothed out in
the tonal part, and the transient part is sharply peaked as expected.
Even though the result is not perfect, it is nevertheless of very good
quality, given the small nomber of coefficients taken into account for
the reconstruction.
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Fig. 1. Xilophone signal. Top : original; bottom : tonal layer and
transient layer

4. CONCLUSIONS AND PERSPECTIVES

The random waveform models described in this note provide an in-
teresting and valuable approach for modeling audio signals featuring
different components such as tonals, transients,... We have presented
here a simple estimation algorithm, that does not rely on complex
optimization techniques, and does therefore allow computations in
reasonable times. Our approach yields very sparse signal expan-
sions, which may be of interest in various applications, in particular
signal coding, following the lines of [1, 2].

Possible modifications and extensions of this approach could in-
volve the following :

• The introduction of frequency dependent variances for α and
β coefficient in the model (1). It is not difficult to see that
the theoretical estimates and corresponding algorithms may
be modified accordingly.

• The definition and implementation of more precise models for
structured significance maps. Good candidates are provided
by Markov models, and Ising-type models.

• The orthogonal projection used in (11) for estimating the sparse
expansion starting from the significance map may be replaced
by other approaches yielding sparser approximations (for ex-
ample, an adapted version of basis pursuit [4]), and poten-
tially better separation betwen the layers.

• In an audio coding perspective, the proposed scheme is not
scalable, i.e. it does not allow the control of the size of the
significance maps as a function of desired quality. A scalable
version of this approach is currently under study.

• The adaptation of this approach to audio denoising would re-
quire further modelling of the residual r in (1). Indeed, when
the “clean” signal contains essentially tonals and transients
(like the xilophone signal studied here), the estimated residual
will essentially contain noise. In such case, our approach may
be directly used for denoising purpose. However, in some
cases, the “clean” signal may contain additional wide band
“stochastic like” components, which should be modelled fur-
ther in order to be distinguishable from the noise.

• Extension to the multichannel situation can also be consid-
ered, which raises (among others) the following question : to
which extent may the different channels share a common sig-
nificance map.
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