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ABSTRACT
Non-stationary time series are common in practice and distinguish-
ing them from stationary series has important implications for esti-
mation, identification and forecasting as stationarity models often
lead to simpler solutions. We develop a statistical test for station-
arity based on the ratio of the arithmetic to geometric means of
spectra obtained from non-overlapping segments of the time series.
The power of this test is compared to one of the most well-known
tests in time series analysis, the KPSS test. Results indicate that
the proposed test can replace the KPSS test, particularly for time-
varying AR models where it significantly outperforms the current
standard.

1. INTRODUCTION

It is known that non-stationary time series are the rule, rather than
the exception, in practice [1]. Methods for dealing directly with
non-stationary series are not as well developed as for stationary
series where theory for estimation, identification and forecasting
is well established. Furthermore, most statistical signal processing
techniques that are applied to linear and non-linear signal or sys-
tem analysis require the assumption of stationarity. Since most
non-stationary series can be made stationary by suitable trans-
forms such as differencing, it is of value to test whether a series
is stationary or non-stationary. Furthermore, long term forecasts
based on a stationary model, when in fact a series is non-stationary,
can be seriously in error. However, determining whether a signal
is stationary is not a straightforward task.

A generic approach to testing for non-stationarity in the fre-
quency domain is to split a series into non-overlapping segments
and then to compare the spectra [2, 3, 4, 5].

Time domain approaches generally test using a non-stationary
null of a unit root, or random walk, a popular model in econo-
metrics. However, these tests are poorly regarded for their low
power and the sense of a non-stationary null [2]. The KPSS test
for a stationary null versus a non-stationarity alternative of a unit
root overcomes this [6] and is currently one of the most referenced
tests. However, in any case, a unit root is a limited form of non-
stationarity.

Here, the frequency domain approach is taken to test whether
an arbitrary number of spectra are equal at any frequency using a
sphericity test. This combines certain aspects of [3, 4, 5].

In order to develop a test for stationarity it is necessary to first
define what type of stationarity is being tested for as several exist.

Recall that for a time series, Xt, t ∈ Z, two types of stationar-
ity are generally defined in the literature [7]. The first is simply
referred to as stationarity in place of the terms weak, covariance,
wide sense or second order stationarity which are in common us-
age. Stationarity implies the first and second order moments and
the autocorrelation function, RXX , exist and are time invariant.

Definition 1 The time series Xt is stationary if

E[Xt] = µ, E
ˆ
X2

t

˜
< ∞,

RXX(τ) = Cov[(Xt − µ)(Xt+τ − µ)] , ∀ t, τ ∈ Z.

Strict stationarity is the most restrictive definition in that it con-
strains all statistical properties to be time invariant.

Definition 2 The time series Xt is strictly stationary if the joint
distributions of (Xt1 , . . . , XtK

)T and (Xt1+τ , . . . , XtK+τ )T are
equal for all K ∈ Z

+ and t1, . . . , tK , τ ∈ Z.

In practice, strict stationarity is too difficult to test for and so either
Def. (1) or a definition stronger than stationarity but weaker than
strict stationarity is used.

Here we concentrate on testing for stationarity with a pro-
viso that the observations have been detrended to remove non-
stationarity arising from a slowly changing mean so that E[Xt] =
0. This type of non-stationarity is commonly due to determinis-
tic trends, which it is standard practice to remove by linear least
squares or low pass filtering [2, 7]. The hypothesis test is then
generally formulated as

H : Xt is stationary,
K : Xt is non-stationary.

2. STATIONARITY TESTS

2.1. Time Domain Tests

Most time domain approaches test for a non-stationary null of a
unit root against a stationary alternative. Aside from low power,
they have a basic conceptual problem since the non-stationary null
will be retained unless there is significant evidence otherwise, which
is often lacking. In [6] a test for a stationary null versus the non-
stationarity alternative of a unit root was presented. Testing for a
unit root is important in econometrics where it is a common model,
however, it is a limited form of non-stationarity and more general
tests are needed.
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2.2. Frequency Domain Tests

A general approach to testing for stationarity versus non-stationarity
determines whether the spectrum of Xt is changing with time.
This is the frequency domain equivalent of testing whether the
autocorrelation function is time invariant. If the variance can be
assumed finite and the time series has been suitably detrended as
mentioned previously, then this test covers the stationarity condi-
tions of Def. (1).

Let Xt, t = 1, . . . , N , be N observations of a suitably de-
trended time series. Divide Xt into M non-overlapping segments
of length T , Xm

t , t = 1, . . . , N/M , m = 1, . . . , M and denote
the spectrum of the mth segment by Cm

XX(ω). A test for the null
hypothesis H , that Xt is stationarity, versus the alternative hypoth-
esis K, that Xt is non-stationary, can be constructed as follows

H : C1
XX(ω) = · · · = CM

XX(ω) ∀ ω
K : not H.

(1)

This concept has been previously implemented in several ways:

1. Test directly if two spectra are proportional by testing whether
the spectral values are proportional at chosen frequencies
using a sphericity statistic [5]. This test is only valid for
M = 2.

2. Test if the evolutionary spectrum is constant with respect
to time by performing an ANOVA (analysis of variance) on
a two dimensional least squares regression fit to a grid of
values in the time-frequency plane [3].

3. The evolutionary spectrum based test above was simplified
by taking the spectra of non-overlapping segments of the
observations and then utilising ANOVA to test whether the
spectrum is time invariant [4]. This test is valid for arbi-
trary M . Conceptually, this is equivalent to replacing the
evolutionary spectrum in the previous test with a spectro-
gram using non-overlapping segments.

2.2.1. Sphericity Based Test

The frequency domain sphericity based test proposed here uses
properties of the sphericity statistic in a similar way to the above
test for proportionality of two spectra, we now consider this test in
more detail.

In [8] a measure of distance between two spectra CXX(ω) and
CY Y (ω) was proposed as

D(X, Y ) = log
1

2π

Z π

−π

CXX(ω)

CY Y (ω)
dω−

1

2π

Z π

−π

log
CXX(ω)

CY Y (ω)
dω

which is akin to an entropy ratio. This measure can, for instance,
be used to test whether two spectra are proportional [9, 10, 11], or,
whether CXX(ω) is a white process by setting CY Y (ω) = 1 [12].
It was shown that this is equivalent to the time domain sphericity
statistic

S(X, Y ) = log
tr

`
ΓXΓ−1

Y

´
/T`

det
`
ΓXΓ−1

Y

´´1/T

where ΓX and ΓY are the covariance matrices of X and Y respec-
tively in the sense that limT→∞ |Ŝ − D̂| = 0 with probability
one. In practice, the biased sample autocorrelation may be used to
estimate S, while a smoothed periodogram is used to estimate D.

We propose another interpretation of this statistic which is
obtained by constructing a sphericity statistic, i.e. the ratio of

the arithmetic to geometric means, from values of the spectrum
CXX(ωk) at discrete frequencies ωk, k = 1, . . . , T ,

S(X) =
1

T

PT
k=1

CXX(ωk)“QT
k=1

CXX(ωk)
” 1

T

.

Taking the logarithm of S(X), SL(X), gives

SL(X) = log
1

2π

2π

T

TX
k=1

CXX(ωk)−
1

2π

2π

T

TX
k=1

log CXX(ωk).

So that if

lim
T→∞

log
2π

T

TX
k=1

CXX(ωk) = log

Z π

−π

CXX(ω) dω

lim
T→∞

2π

T

TX
k=1

log CXX(ωk) =

Z π

−π

log CXX(ω) dω

holds then D(X, 1) can be interpreted as the limit, T → ∞, of
a sphericity statistic taken at a set of frequencies ωk in that it
tests whether the spectral values CXX(ωk), k = 1, . . . , T , are
equal. Note that SL(X) = 0 iff the spectral values are equal and
SL(X) > 0 if not. Replacing CXX(ωk) with a ratio of two spec-
tra, it is straightforward to see how SL(X) is a test statistic for the
hypothesis that two spectra are equally proportional at all frequen-
cies.

2.2.2. Proposed Sphericity Based Test

The sphericity statistic described above can only be used to test
whether M = 2 spectra are proportional. We wish to generalise
this test to arbitrary M for the following reasons:

1. It enables us to have a variable resolution in time. This is
useful for determining which segments of the observations
are stationarity or non-stationarity and where the transition
regions lie. Furthermore, since non-stationarity may be ap-
parent only at certain time scales, it is important that it is
possible to test for non-stationarity over various intervals
of time.

2. The proposed test enables us to determine whether non-
stationarity exists only for some frequencies. This may oc-
cur, for example, due to the presence of a sinusoidal signal
whose frequency changes over time.

To develop the test, we make use of the following well known
relationship between the geometric and arithmetic means [13].

Property 1 For positive real numbers am, m = 1, . . . , M , the
arithmetic mean, A(a1, . . . , aM ) = 1/M

PM
m=1

am, and the ge-
ometric mean, G(a1, . . . , aM ) = (

QM
m=1

am)1/M , satisfy

log
A(a1, . . . , aM )

G(a1, . . . , aM )
≥ 0

with equality iff a1 = · · · = aM .

This motivates use of the statistic

SM (ωk) = log
A(C1

XX(ωk), . . . , CM
XX(ωk))

G(C1
XX(ωk), . . . , CM

XX(ωk))

= log
1

M

MX
m=1

Cm
XX(ωk) −

1

M

MX
m=1

log Cm
XX(ωk)
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to be used in a test for (1), but only at frequency ωk. Note that here
we use the sphericity statistic to test for equality of M spectra at a
specific frequency in comparison to its use in Section 2.2.1 where
it was used to test whether two spectra are equally proportional
across all frequencies. In comparison to the two frequency domain
stationarity tests in Section 2.2, we are testing for time invariance
of the spectra of non-overlapping segments of the observations at
a specific frequency using a sphericity statistic instead of across
all frequencies simultaneously using ANOVA. The proposed test
is then a hybrid between the approaches in Section 2.2.1.

To test (1) at all frequencies we may perform either a mul-
tiple hypothesis test or find a suitable projection of the statistics
SM (ωk) ∀ωk onto one dimension. Here we do this by taking the
mean over all frequencies to obtain SM . Estimates of the spec-
trum are obtained by kernel smoothing of the periodogram using a
rectangular window.

3. SIMULATIONS AND DISCUSSION

All simulations were run over 1000 Monte Carlo realisations. The
number of observations was N = 1024 while the number of non-
overlapping segments was varied over M = {2, 4, 8, 16} so that
the corresponding segment lengths were T = {512, 256, 128, 64}.
A rectangular window was used for smoothing the periodogram to
estimate the spectrum of the mth segment, Cm

XX(ω). The kernel
bandwidth was varied so that K evenly spaced frequencies be-
tween 0 and π were evaluated for K = {4, 6, 8, 10} with ω1 = 0
and ωK = π.

Rejection rates were evaluated under the null hypothesis for
six stationary models, all ARMA(p, q) (Autoregressive Moving
Average) processes:

1. iid Gaussian: Xt = εt.

2. AR(1), α1 = 0.5: Xt = 0.5Xt−1 + εt.

3. AR(1), α1 = −0.5.

4. AR(1), α1 = 0.95.

5. MA(1) with β1 = 1: Xt = εt + εt−1.

6. AR(5): Xt = 0.5Xt−1−0.6Xt−2+0.3Xt−3−0.4Xt−4+
0.2Xt−5 + εt.

For the alternative hypothesis, nine non-stationary models were
used including ARIMA(p, d, q) (AR Integrated MA), TVAR(p)
(time varying AR(p)) and GARCH (Generalised AR Condition-
ally Heteroscedastic) processes. Briefly, ARIMA processes gener-
alise ARMA processes by allowing for unit roots of multiplicity d.
TVAR processes allow for time varying AR parameters. GARCH
processes allow the variance of the innovation sequence in an AR
process to vary. These are the most commonly used non-stationary
models in time series analysis [2, 1, 7]. The specific cases were:

1. Random walk: ARIMA(0, 1, 0), Xt = Xt−1 + εt.

2. Integrated random walk: ARIMA(0, 2, 0).

3. ARI: ARIMA(1, 1, 0) with α1 = 0.5.

4. IMA: ARIMA(0, 1, 1) with β1 = 1.

5. ARIMA: ARIMA(1, 1, 1) with α1 = 0.5, β1 = 1.

6. TVAR A: TVAR(1) with α1 varying linearly between 0.2
and 0.8.

7. TVAR B: TVAR(1) with α1 varying linearly between -0.5
and 0.5.

8. GARCH A: An AR(1) model with α1 = 0.5 where the
variance of the innovations varies linearly from 0.5 to 2.

9. GARCH B: An AR(1) model with α1 = 0.5 where the
variance of the innovations varies linearly from 0.1 to 1.

In each case the innovations, εt, were iid N (0, 1).

Thresholds for the test were based on a 5% level of signifi-
cance estimated empirically under a null distribution of iid Gaus-
sian observations.

The frequencies ω = 0, π were excluded from SM . This was
motivated by the observation that under the null, the distribution of
SM (ωk) appears constant over frequency, excluding the cases ω =
0, π. The apparent similarity of the distributions over frequency
can be explained by the fact that the smoothed periodogram is
asymptotically χ2 with the same degrees of freedom for ω �= 0, π,
while the degrees of freedom are reduced for ω = 0, π.

Some representative results showing rejection rates for the pro-
posed test over all frequency bins and number of segments are
shown in Table 1. It is difficult to give optimal values for K
and M , although to trade-off maintenance of the set level under
the null and maximising the power, K = 10 frequency bins and
M = 4 segments seems reasonable. Note that the AR(1) model
with α1 = 0.95 is near to a non-stationary random walk model
and so is often rejected, especially over shorter time intervals with
smaller M .

The results of the proposed test were compared to one of the
most well-known, the KPSS test [6]. In Table 2 the KPSS test and
SM are compared for K = 10 and M = 4. Both have similar
performance under the null although an exception occurs for the
near to non-stationary AR(1) model with α1 = 0.95 where the
rejection rate is 37.4% for the KPSS test compared to 11.8% for
SM . Under the alternative SM has a much greater power for the
TVAR and GARCH models. The only model where the KPSS test
has a non-negligible higher power is for the random walk which it
is specifically designed to detect.

Further simulations summarised in Table 3 for an AR(1) pro-
cess, α ∈ [−1, 1], show that the behaviour of SM depends only
on |α1|. For the KPSS test, the rejection rate constantly decreases
with α1 to 0% for the non-stationary case of α1 = −1. This ap-
pears to be a consequence of the KPSS test implicitly testing for a
random walk, i.e. an AR(1) process with α1 = 1.

4. CONCLUSION

A test for stationarity was proposed which exploited the properties
of the sphericity statistic. First, it was shown that the sphericity
statistic in the frequency domain can be interpreted as a ratio of
the arithmetic to geometric means of spectra. Further, this test was
generalised to an arbitrary number of spectra. Extensive simula-
tions were performed to evaluate the power of the proposed test
for different numbers of segments and frequency bins. Several sta-
tionary processes as well as non-stationary processes were used.
The proposed test was compared to the well-known KPSS test as
the current standard in stationarity testing. Results indicate that
the proposed test can replace the KPSS test and that it shows sig-
nificant improvements in performance in the case of alternatives
modelled by a time-varying AR process.

III ­ 466



Table 1. Rejection rates (%) for some of the models using SM .
Model No. frequency bins K

M T 4 6 8 10

AR(1), 16 64 7.2 5.2 3.9 5.5
α1 = 0.5 8 128 7.0 8.9 5.7 5.9

4 256 6.7 5.8 6.0 6.5
2 512 5.6 5.9 5.8 4.9

AR(1), 16 64 59.3 46.0 31.3 23.8
α1 = 0.95 8 128 34.8 31.6 26.0 21.6

4 256 18.8 17.1 11.5 11.8
2 512 9.3 9.7 7.0 6.7

MA(1), 16 64 9.3 8.3 7.1 6.7
β1 = 1 8 128 8.7 10.6 8.5 8.8

4 256 6.9 8.0 7.3 6.0
2 512 5.7 7.7 5.6 6.2

AR(5) 16 64 11.7 19.4 9.7 6.2
8 128 12.4 20.8 12.4 7.8
4 256 9.6 17.4 8.2 7.0
2 512 7.5 9.9 7.0 7.0

Random 16 64 98.3 96.9 91.3 80.7
walk 8 128 95.8 95.5 94.3 93.0

4 256 91.4 88.7 86.9 85.4
2 512 67.6 69.8 67.2 64.8

ARIMA 16 64 100.0 100.0 99.9 100.0
8 128 100.0 100.0 100.0 99.8
4 256 99.0 99.5 99.1 98.9
2 512 88.3 88.4 86.4 86.3

TVAR B 16 64 69.8 85.3 77.3 76.3
8 128 90.0 98.1 99.1 98.2
4 256 95.2 99.8 99.6 99.9
2 512 97.2 100.0 100.0 99.9

GARCH A 16 64 98.6 94.9 81.2 74.0
8 128 99.7 99.6 98.9 98.4
4 256 99.9 100.0 100.0 99.9
2 512 100.0 99.9 100.0 99.8
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